Breast cancer has increasingly claimed the lives of women. Oncologists use digital mammograms as a viable source to detect breast cancer and classify it into benign and malignant based on the severity. The performance of the traditional methods on breast cancer detection could not be improved beyond a certain point due to the limitations and scope of computing. Moreover, the constrained scope of image processing techniques in developing automated breast cancer detection systems has motivated the researchers to shift their focus towards Artificial Intelligence based models. The Neural Networks (NN) have exhibited greater scope for the development of automated medical image analysis systems with the highest degree of accuracy. As NN model enables the automated system to understand the feature of problem-solving without being explicitly programmed. The optimization for NN offers an additional payoff on accuracy, computational complexity, and time. As the scope and suitability of optimization methods are data-dependent, the choice of selection of an appropriate optimization method itself is emerging as a prominent domain of research. In this paper, Deep Neural Networks (DNN) with different optimizers and Learning rates were designed for the prediction of breast cancer and its classification. Comparative performance analysis of five distinct first-order gradient-based optimization techniques, namely, Adaptive Gradient (Adagrad), Root Mean Square Propagation (RMSProp), Adaptive Delta (Adadelta), Adaptive Moment Estimation (Adam), and Stochastic Gradient Descent (SGD), is carried out to make predictions on the classification of breast cancer masses. For this purpose, the Mammographic Mass dataset was chosen for experimentation. The parameters determined for experiments were chosen on the number of hidden layers and learning rate along with hyperparameter tuning. The impacts of those optimizers were tested on the NN with One Hidden Layer (NN1HL), DNN with Three Hidden Layers (DNN4HL), and DNN with Eight Hidden Layers (DNN8HL). The experimental results showed that DNN8HL-Adam (DNN8HL-AM) had produced the highest accuracy of 91% among its counterparts. This research endorsed that the incorporation of optimizers in DNN contributes to an increased accuracy and optimized architecture for automated system development using neural networks.
E-Commerce has been known as a rapidly growing commercial enterprise, and even though on line purchasing has no longer accompanied those identical boom patterns within the beyond, it's miles now being diagnosed for its capability. Sentiment evaluation is one of the current research subjects in the subject of textual content mining. Opinions and sentiments mining from natural language are very difficult task. Sentiment analysis is the best solution. This gives important information for decision making in various domains. Various sentiment detection methods are available which affect the quality of result. In this paper, finding the sentiments of people related to the services of E-shopping websites. The sentiments include reviews, ratings and emoticons. The main goal is to recommend the products to users which are posted in E-shopping website and analyzing which one is the best and use hybrid learning algorithm which analyze various feedbacks related to the services. Text mining algorithm is used to find scores of each word. Then sentiments are classified as negative, positive and neutral. It has been observed that the pre-processing of the data is greatly affecting the quality of detected sentiments. Finally analysis takes place based on classification. To find out fake review in the website can be analyzed. This device will discover fake critiques made via posting fake remarks about a product via figuring out the MAC deal with in conjunction with assessment posting styles. User will login to the device using his consumer identification and password and could view various merchandise and will give assessment approximately the product. To discover the evaluation is fake or authentic, system will find out the MAC address of the consumer if the machine observes fake assessment send by way of the identical MAC Address many a times it'll inform the admin to do away with that overview from the device. This gadget uses information mining technique. This machine allows the user to find out accurate overview of the product.
Breast cancer ranks as the second most common malignancy among women and the second-most common reason for cancer deaths worldwide. Digital Mammogram screening can offer low-cost early diagnosis and reduce the breast cancer fatality rate among victims. This research aims to build a model that automatically assists in classifying malignant and benign lesions depicted on digital mammograms without any human interventions. The Mammographic Image Analysis Society (mini-MIAS) image dataset, which contains 322 mammograms, is employed in the present study. This research focuses on the Background Preserved and Feature-Oriented Contrast Improvement (BPFO-CI) method for contrast enhancement that uses the Weighted Cumulative Distribution Function. The Region of Interest (RoI) is then extracted from the improved mammograms using the Thresholding Segmentation method. Then extracted RoIs are used as input for classification using optimal Convolutional Neural Networks (CNN). Data augmentation is applied to the pre-processed dataset. The suggested pre-processed CNN model's performance is compared to various classification algorithms in pertaining to accuracy and confusion matrix. The simulation results confirm the importance and effectiveness of the suggested model in comparison to other well-known conventional approaches. As a result, this classification method is predicted to aid in the diagnosis of breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.