A plug-in hybrid electric vehicles (PHEV) charger adapter consists of an AC/DC power factor correction (PFC) circuit accompanied by a full-bridge isolated DC/DC converter. This paper introduces an efficient two-stage charger topology with an improved PFC rectifier as front-end and a high-frequency zero voltage switching (ZVS). Current switching (ZCS) DC/DC converter is the second part. The front-end converter is chosen as bridgeless interleaved (BLIL) boost converter, as it provides the advantages like lessened input current ripple, capacitor voltage ripple, and electromagnetic interference. Resettable integrator (RI) control technique is employed for PFC and DC voltage regulation. The controller achieves nonlinear switching converter control and makes it more resilient with the faster transient response and input noise rejection. The second stage incorporates a resonant circuit, which helps in achieving ZVS/ZCS for inverter switches and rectifier diodes. PI controller with phase shift modulator is used for second-stage converter. It improves the overall efficacy of the charger by lowering the switching losses, lowering the voltage stress on the power semiconductor devices, and reversing recovery losses of the diodes. The simulations and experimental results infer that the overall charging efficiency increases to 96.5%, which is 3% higher than the conventional two-stage approach using the interleaved converter.
Plug-in hybrid electric vehicles (PHEVs) consist of a front-end boost rectifier, which incorporates a power factor correction (PFC) circuit for battery charging. Bridgeless interleaved (BLIL) PFC boost converter topology is proved as a standard PFC converter as it has high efficiency, reduced input current ripple, and reduced electromagnetic interference (EMI). This paper proposes a digital nonlinear control technique that employs a resettable integrator to shape the input current of the converter in phase with the input voltage to achieve high input power factor. This control approach rejects power source and load perturbations better than linear feedback control methods. This is accomplished by summing up the sensed input current of a BLIL converter with a fictitious current synthesized with the input voltage.In this work, a BLIL converter is analyzed for its input power factor improvement, voltage stress across the devices, and dynamic response under variable supply and load conditions using simulation. The hardware is tested for a 300 W BLIL boost converter to validate the simulated results. The performance of the proposed controller is compared with that of conventional average current mode control. The experiment and simulation results prove that the resettable integrator controller shows a better performance than the conventional controller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.