Satellite remote sensing, with its unique synoptic coverage capabilities, can provide accurate and immediately valuable information on fire analysis and post-fire assessment, including estimation of burnt areas. In this study the potential for burnt area mapping of the combined use of Artificial Neural Network (ANN) and Spectral Angle Mapper (SAM) classifiers with Landsat TM satellite imagery was evaluated in a Mediterranean setting. As a case study one of the most catastrophic forest fires, which occurred near the capital of Greece during the summer of 2007, was used. The accuracy of the two algorithms in delineating the burnt area from the Landsat TM imagery, acquired shortly after the fire suppression, was determined by the classification accuracy results of the produced thematic maps. In addition, the derived burnt area estimates from the two classifiers were compared with independent estimates available for the study region, obtained from the analysis of higher spatial resolution satellite data. In terms of the overall classification accuracy, ANN outperformed (overall accuracy 90.29%, Kappa coefficient 0.878) the SAM classifier (overall accuracy 83.82%, Kappa coefficient 0.795). Total burnt area estimates from the two classifiers were found also to be in close agreement with the other available estimates for the study region, with a mean absolute percentage difference of ∼1% for ANN and ∼6.5% for SAM. The study demonstrates the potential of the examined here algorithms in detecting burnt areas in a typical Mediterranean setting.
Abstract. Remote sensing is increasingly being used as a cost-effective and practical solution for the rapid evaluation of impacts from wildland fires. The present study investigates the use of the support vector machine (SVM) classification method with multispectral data from the Advanced Spectral Emission and Reflection Radiometer (ASTER) for obtaining a rapid and cost effective post-fire assessment in a Mediterranean setting. A further objective is to perform a detailed intercomparison of available burnt area datasets for one of the most catastrophic forest fire events that occurred near the Greek capital during the summer of 2007. For this purpose, two ASTER scenes were acquired, one before and one closely after the fire episode. Cartography of the burnt area was obtained by classifying each multiband ASTER image into a number of discrete classes using the SVM classifier supported by land use/cover information from the CORINE 2000 land nomenclature. Overall verification of the derived thematic maps based on the classification statistics yielded results with a mean overall accuracy of 94.6% and a mean Kappa coefficient of 0.93. In addition, the burnt area estimate derived from the post-fire ASTER image was found to have an average difference of 9.63% from those reported by other operationally-offered burnt area datasets available for the test region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.