The very clean nuclear fusion reaction of hydrogen and boron-11 by inertial confinement arrives at conditions for power stations by volume ignition only at compressions to 100,000 times the solid state. The earlier (numerically) observed anomaly of decreasing gain at increasing density (retrograde behavior) is analyzed and the reason clarified: the strong stopping power mechanism, based on Gabor's collective model, is reaching its limit of too small Debye lengths at the extremely high densities because of the optimum temperature in the range of 30 keV due to the reabsorption of the bremsstrahlung. The relativistic correction of the bremsstrahlung for the always much higher temperatures after volume ignition is included from Maxon's model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.