The applications of active matrix flat-panel imagers (AMFPIs) in large-area x-ray imaging systems have increased over time but are still severely limited owing to its pixel resolution, complex fabrication processes, and high cost. As a solution, x-ray light valve (XLV) technology was introduced and expected to have a better resolution and contrast ratio than those of AMFPI, owing to its micrometer level of the LC cells and signal amplification by an external light source. The twisting angle of the LC cells was changed by charge carrier signals created in a photoconductor layer against x-rays, and the diagnostic images from XLV were acquired from the transmittance of the external light source. However, there was a possibility that the photoconductor layer may be crystallized or degenerated due to the application of high temperatures for sealing the LC layer during the fabrication process. To solve such problems, polymer-dispersed liquid crystals (PDLCs), which do not need high temperature for the sealing process of the LC layer, are used in this study instead of typical LC cells. A photoconductor and PDLC are combined to develop an x-ray detector. An external light source and optical sensor are used to investigate the light transmission of the PDLC. The PDLCs used in this paper do not need polarizers and are self-adhesive. Hence, the transmittance is very high in the transparent state, which allows for a linear x-ray response and sufficient dynamic range in digital radiography.
An automatic exposure control (AEC) detector is a control device that ensures consistent x-ray image quality and limits patient exposure in digital radiography. Among several kinds of AEC detectors, solid-state sensors offer several advantages such as geometric efficiency due to small thickness, high sensitivity, fast reaction time, and excellent stability. Commercially, the use of single-crystal silicon sensors for AEC detector has grown over time, but is still severely limited by large-area production techniques and mechanically fragile properties. Therefore, our study focused on developing a method of fabricating solid-state sensors that do not suffer from these limitations. The particle-in-binder method was used to fabricate silicon dioxide-based photoconductor films. Because silicon dioxide has a low atomic number and a low work function, it is a suitable material for generating sufficient electron-hole pairs by incident x-rays as well as not negatively affect the image detector of the digital radiography. To verify the feasibility of the silicon dioxide film as an AEC detector, electrical properties such as x-ray transmission and x-ray linearity were measured and compared with those of a commercialized silicon film. Over 90% x-ray transmission was achieved using a 500 μ m silicon dioxide film, which is suitable for an AEC detector. Also, an error below 3% was obtained from both x-ray current and voltage linearity tests. The results of bending tests demonstrated the properties of the silicon dioxide film to be more mechanically strong and stable compared with the commercialized silicon film. These properties were a result of the use of binder materials, which resulted in the flexibility of the film.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.