We present experimental evidence of the generation of few-cycle propagating surface plasmon polariton wavepackets. These ultrashort plasmonic pulses comprised of only 2-3 field oscillations were characterized by an autocorrelation measurement based on electron photoemission. By exploiting plasmonic field enhancement, we achieved plasmon-induced tunnelling emission from the metal surface at low laser intensity, opening perspectives for strong-field experiments with low pulse energies. All-optical electron acceleration up to keV kinetic energy is also demonstrated in these surface-confined, few-cycle fields with only 1.35×10(12) W/cm2 focused laser intensity. The experimental results are found to be in excellent agreement with the model.
A new method, based on the use of the diethyl pyrocarbonate as a nuclease inhibitor, has been worked out for the extraction of undegraded nucleic acids from etiolated and green plant tissues. Experimental evidence is given to show that the nucleic acids isolated by this method exhibit a high degree of purity as evidence by their spectra and that they are essentially undergraded as indicated by sedimentation patterns in sucrose density gradients.
High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half-cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single atom response yields an attosecond pulse train.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.