Recent studies have shown that for a variety of unirradiated and irradiated materials, a slope of ∼2 is obtained for a correlation between yield in a shear punch test and yield in a uniaxial tensile test. Application of the von Mises yield criterion would predict a slope of √3. A finite element model (FEM) of the shear punch test was developed to aid in understanding the experimentally obtained slope of ∼2. FEM simulations of the shear punch test were conducted using stress-strain data from uniaxial tensile tests on 316 stainless steel in four initial cold-work conditions. A correlation was developed between the FEM-evaluated effective shear yield strength and the experimentally-evaluated uniaxial yield strength. The slope from this correlation was found to be nearly the same as for the slope from the correlation between the experimentally-evaluated effective shear yield strength and the experimentally-evaluated uniaxial yield strength. The finite element model showed that stresses other than pure shear exist in a specimen during a shear punch test, and these other stresses may explain why the slope of the experimental yield strength correlation is different than √3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.