The transverse emittance of the electron beam is a fundamental parameter in linac-based x-ray freeelectron lasers (FELs). We present results of emittance measurements carried out at SwissFEL, a compact x-ray FEL facility at the Paul Scherrer Institute in Switzerland, including a description of the novel highresolution measurement techniques and the optimization procedure. We obtained slice emittance values at the undulator entrance down to 200 nm for an electron beam with a charge of 200 pC and an rms duration of 30-40 fs. Furthermore, we achieved slice emittances as low as 100 nm for 10 pC beams with few fs duration. These values set new standards for electron linear accelerators. The quality, verification, and control of our electron beams allowed us to generate high-power FEL radiation for a wavelength as short as 0.1 nm using an electron beam with an energy of only 6 GeV. The emittance values demonstrated at SwissFEL would allow producing hard x-ray FEL pulses with even lower-energy beams, thus paving the way for even more compact and cost-effective FEL facilities.
We evidence numerically and experimentally that advection can induce spectrotemporal defects in a system presenting a localized structure. Those defects in the spectrum are associated with the breakings induced by the drift of the localized solution. The results are based on simulations and experiments performed on the super-ACO free-electron laser. However, we show that this instability can be generalized using a real Ginzburg-Landau equation with (i) advection and (ii) a finite-size supercritical region.
We show that the pulsed regimes observed in free-electron lasers (FELs) can be suppressed using feedback control. By applying tiny parameter perturbations, the feedback allows to keep the systems onto a stationary state that is naturally existing in phase space, but is usually inaccessible because of its unstable nature. We test this method numerically on a master equation derived from the classical iterative model. Then we present the experimental results obtained on the super-ACO FEL. This method is in principle directly applicable to the other free-electron lasers, whose instabilities have a dynamical (deterministic) origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.