To measure blood flow in the intestinal mucosa we built a laser-Doppler flowmeter that consists of a helium-neon laser, an electronic circuit, and a pair of fiber-optic light guides that conduct laser light to the tissue and carry the backscattered light to a photodetector. Because light scattered by moving red blood cells experiences a shift in its frequency, we measured blood flow by detecting the mean Doppler frequency. In isolated loops of canine small bowel, we raised perfusion pressure and found the increases in laser mucosal blood flow were significantly correlated with total blood flow measured by an electromagnetic probe. During infusions of isoproterenol (a selective vasodilator of the mucosa), laser mucosal blood flow increased before total flow increased. Similarly, adenosine (a selective dilator of the muscularis) increased total flow, whereas local mucosal blood flow fell or was unchanged. In addition, reactive hyperemia was sometimes observed in the mucosa but not in the muscularis. These observations indicate that the laser-Doppler technique measures blood flow in the surface tissue and does not reflect blood flow throughout the other tissues of the bowel wall. Instrumental problems identified in this study were 1) the difficulty of calibrating the laser mucosal blood flowmeter in absolute units, 2) the uncertainty of the volume of tissue in which local mucosal blood flow is measured, and 3) the problem of maintaining contact between the optical probe and the tissue. Nevertheless, the method holds great promise because it can detect small ischemic areas, because it could be used in combination with endoscopy, and because it yields a continuous measurement of blood flow in either the muscularis or mucosa.
Several laser-Doppler blood flowmeters are now commercially available; however, only one utilizes an infrared laser diode (Laserflo, TSI, St. Paul, MN). Because of this and other unique features such as its microprocessor-based signal analyzer, we evaluated this device's ability to measure tissue perfusion. Initially, we determined whether laser illumination directly affected the microvasculature. Intravital microscopic observations in the hamster cremaster muscle indicated that neither He-Ne nor infrared laser light affected the diameters of arterioles that were responsive to vasoactive agents. To test the flowmeter for linearity and repeatability, we used a rotating disk to simulate a light-scattering, flowing medium. The "flow" signal was highly correlated (r = 0.99) with the rotational velocity of the disk, was consistent among flow probes, and showed a high degree of reproducibility. The second model consisted of microsphere suspensions pumped through cuvettes. The laser-Doppler velocimeter (LDV) flow signal was linear with respect to pump output. With red blood cells in the perfusate, we examined the effects of blood oxygenation on the flowmeter's performance. The LDV flow signal was unaffected by changes in blood oxygenation. We evaluated linearity in vivo in isolated, perfused rat livers and in isolated canine gastric flaps. We observed linear relationships between total flow and laser-Doppler flow measured on the surface of the liver (r = 0.98) and in the gastric mucosa (r = 0.98), but the slopes of the relationships between total and local LDV flow showed considerable variability not noted in the in vitro studies.(ABSTRACT TRUNCATED AT 250 WORDS)
The isolated perfused rat liver is used ubiquitously for metabolic and endocrine studies of hepatic function, yet few data are available regarding the inadequacy of the oxygenation of such preparations. Moreover, the isolated rat liver is usually deprived of its arterial supply and perfused via the hepatic portal vein with low-hematocrit or cell-free solutions. To investigate the efficacy of the oxygen supply, we determined the effect of hematocrit on the relation between oxygen consumption and perfusate flow. We then attempted to define a hematocrit at which hepatic oxygenation was maximal. Livers of male rats anesthesized with pentobarbital sodium were perfused via the portal vein with fresh canine red blood cells suspended in Krebs-Ringer-bicarbonate buffer. Perfusions were carried out at various flow rates, and the relation between perfusate flow and oxygen uptake was determined. At flow rates above 100 ml X min-1 X 100 g liver-1, oxygen uptake was independent of flow but below that value was flow limited, regardless of whether the hematocrit was 10, 20, or 40%. To determine the optimal hematocrit for hepatic oxygen uptake, hepatic portal venous and hepatic venous pressures were held at 10 and 0 mmHg, respectively. The hematocrit was lowered in steps from 80 to 10%. Blood flow increased exponentially as hematocrit fell while oxygen uptake increased to a maximum at approximately 20%. It is concluded that an hematocrit of approximately 20% provides the optimal combination of blood flow and oxygen-carrying capacity while maintaining physiological perfusion pressures, e.g., 10 mmHg.
To determine the feasibility of measuring gastric mucosal blood flow by laser-Doppler velocimetry (LDV), we utilized two LDV flowmeters to monitor blood flow in mucosa and serosa of chambered canine stomach. In isolated, nonautoregulating gastric segments vasodilated with isoproterenol, LDV mucosal and muscularis blood flows were both linearly related to total electromagnetic blood flow during step increases in perfusion pressure. To assess the depth of the LDV measurement, we recorded reactive hyperemia following arterial occlusion. Reactive hyperemia was frequently registered in the mucosa but rarely in muscularis. Placing a layer of nonperfused mucosa-submucosa between the probe and the perfused mucosa abolished the resting LDV mucosal flow signal and attenuated the recording of peak hyperemia by 85%. Furthermore, intra-arterial infusions of both adenosine and isoproterenol frequently increased LDV mucosal flow and decreased LDV muscularis flow, although total flow was consistently increased. These findings indicate that our LDV instruments yield linear, superficial measurements of gastric blood flow in either mucosa or muscularis. Although calibration in absolute units remains to be achieved, our results demonstrate that LDV is a practical means of studying the gastric mucosal microcirculation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.