The effects of many single stressors have been reported, but how pigs perform when subjected to more than one or two stressors at a time, as is common in commercial swine production, has not. To study this, 256 Yorkshire x Hampshire or purebred Duroc pigs (34.7+/-.5 kg) were subjected to one of the eight treatment combinations (2 x 2 x 2 factorial) of ambient temperature (constant thermoneutral [24 degrees C] or high cycling temperature [28 to 34 degrees C]), stocking density (.56 or .25 m2/pig), and social group (static group or regrouped at the start of wk 1 and 3) during a 4-wk experiment. The temperature regimens were imposed in two adjacent mechanically ventilated rooms, and each temperature was imposed in each room across two trials. Four barrows and four gilts were assigned to each of the eight pens in the two rooms, and they always had free access to water and a corn-soybean meal-based diet. Treatments were imposed after a 7-d acclimation period at 24 degrees C and .56 m2/pig. Weight gain and feed intake were measured weekly. The main effects of each of the stressors for 4-wk ADG and ADFI were significant (P < .05). The stress of high temperature, high stocking density, and regrouping depressed 4-wk ADG by 12, 16 and 10% and ADFI by 7, 6, and 5%, respectively. Of the possible 60 stressor interactions for ADG, ADFI, and gain:feed (G:F), there were no significant three-way interactions and only six two-way interactions, suggesting that the effects of the individual stressors were additive. Accordingly, the growth rate of pigs subjected to the single stressor of high cycling temperature, restricted space allowance, or regrouping was depressed 10, 16, and 11%, respectively, and ADG of pigs subjected to all three stressors simultaneously was depressed by 31%. Stressor additivity was further corroborated by examining the effect of stressor order, or the number of stressors imposed simultaneously. As the number of stressors increased from 0 to 3, ADG, ADFI, and G:F decreased linearly. These data suggest that multiple concurrent stressors affect growth performance of pigs in a predictable fashion (i.e., additively) and indicate that avoidance or removal of a given stressor is advantageous even when other uncontrollable stressors persist.
The objectives of this study were 1) to determine the effects of supplemental ascorbic acid (AA) on the energy conversion of broiler chicks maintained at thermoneutral and potential heat stress temperatures using indirect convective calorimetry; and 2) to determine whether changes in energy conversion are reflected in changes in lipid metabolism. In Experiment 1, 120 2-d-old cockerels, housed in two identical environmental chambers, were maintained under constant light (2.0 +/- 0.2 fc) and recommended thermal conditions (29.6 +/- 0.8 C; 33.4 +/- 8.0% RH) and consumed water and feed ad libitum. Beginning on Day 8 posthatch, one-half of the birds inside each chamber were randomly assigned and received feed supplemented with AA. Beginning on Day 9 posthatch, the temperature inside one chamber was increased to 34 C whereas the other chamber remained thermoneutral. This design resulted in four treatments: 1) thermoneutral (TN: 27.7 +/- 0.8 C; 40.9 +/- 9.4% RH) and 0 mg AA/kg feed (ppm); 2) TN and 150 ppm AA; 3) heat stress (H: 33.8 +/- 0.5 C; 43.3 +/- 7.4% RH) and 0 ppm AA; or 4) H and 150 ppm AA. Also beginning on Day 9 posthatch, birds were randomly assigned to one of three identical, indirect convective calorimeters designed to accommodate TN or H. Oxygen consumption, carbon dioxide production, respiratory quotient, and heat production were evaluated daily for 8 h, through Day 17 posthatch. Following calorimetric measurement, birds were returned to their respective caging unit/chamber for the remainder of the study. Weight gain, feed intake, and gain: feed were also measured over the 9-d study. Heat exposure depressed (P < 0.05) weight gain, feed intake, and gain:feed. Ascorbic acid increased (P < 0.10) weight gain. Oxygen consumption and carbon dioxide and heat production per kilogram0.75 decreased (P < 0.05) with age with no change in the respiratory quotient. Heat exposure lowered (P < 0.001) the respiratory quotient. A temperature by AA interaction was detected in which heat-exposed birds expressed lower (P < 0.10) respiratory quotients when consuming the AA-supplemented diet. In Experiment 2, 18 2-d-old cockerels, housed in an environmental chamber, were maintained under constant light and recommended thermal conditions (29.3 +/- 0.4 C; 41.4 +/- 3.3% RH) and consumed water and feed ad libitum. On Day 9 posthatch, birds were deprived of feed for 24 h with ad libitum access to water supplemented with either 0 or 400 mg AA/L. Blood samples were obtained from each bird before and after feed withdrawal and supplementation. Supplemented birds exhibited elevated (P < 0.01) plasma AA, levels that were not affected by feed deprivation. Feed deprivation increased (P < 0.0001) plasma beta-hydroxybutyrate with no effect of AA, and decreased (P < 0.05) plasma triglycerides in the unsupplemented birds. A feed withdrawal by AA interaction was detected in which plasma triglycerides remained elevated in birds supplemented with AA. These data suggest that supplemental AA influences body energy stores that are used for energy pu...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.