A dye-sensitized nanocrystalline copper sulphide (CuS) solar cell is developed using crystal violet (CV) as a photosensitizer. Nanocrystalline CuS thin film is deposited on indium tin oxide-(ITO-) coated glass substrate by chemical bath deposition (CBD) technique. These thin films are characterized for their structural, optical and electrical properties using X-ray diffractometer (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM). Optical absorbance measurements from UV-visible spectrometer at normal incidence of light in the wavelength range of 320-1100 nm and current-voltage (I-V) measurements were also made. The deposited CuS thin film on ITO-coated glass substrate may be used as a photo electrode in the fabrication of dyesensitized solar cell (DSSC). The carbon soot collected on the substrate is used as a counter electrode. The counter electrode coupled with a dye-sensitized CuS thin film along with a redox electrolyte mixture is used to develop a complete photovoltaic cell. The fill factor and efficiency were evaluated for the developed DSSC.
At present, inorganic semiconducting materials are the most economical and viable source for the renewable energy industry. The present work deals with the morphological and optical characterization of copper oxide (CuO) and zinc oxide (ZnO) thin films fabricated by layer by layer deposition on nickel oxide (NiO) coated indium tin oxide (ITO) glass by solution processing methods, mainly chemical bath deposition (CBD) and hydrothermal deposition (HTD) processes at room temperature. As a whole, the above inorganic composite materials (NiO/CuO/ZnO) can be applied in photovoltaic cells. An attempt has been made to study structural, morphological and absorption characteristics of NiO/CuO/ZnO heterojunction using state of the art techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV spectroscopy. The energy band gaps of CuO and ZnO have also been calculated and discussed based on the UV spectroscopy measurements.
We have demonstrated hydrothermal synthesis of rectangular pillar-like CuO nanostructures at low temperature (~60°C) by selective growth on top of NiO porous structures film deposited using chemical bath deposition method at room temperature using indium tin oxide (ITO) coated glass plate as a substrate. The growth of CuO not only filled the NiO porous structures but also formed the big nanopillars/nanowalls on top of NiO surface. These nanopillars could have significant use in nanoelectronics devices or can also be used as p-type conducting wires. The present study is limited to the surface morphology studies of the thin nanostructured layers of NiO/CuO composite materials. Structural, morphological, and absorption measurement of the CuO/NiO heterojunction were studied using state-of-the-art techniques like X-ray diffraction (XRD), transmission electron microscopy (SEM), atomic force microscopy (AFM), and UV spectroscopy. The CuO nanopillars/nanowalls have the structure in order of (5 ± 1.0) μm × (2.0 ± 0.3) μm; this will help to provide efficient charge transport in between the different semiconducting layers. The energy band gap of NiO and CuO was also calculated based on UV measurements and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.