Protective efficacy of Bacillus Calmette-Guérin (BCG) may be affected by the methods and routes of vaccine administration. We have studied the safety and immunogenicity of oral (PO) and/or intradermal (ID) administration of BCG in healthy human subjects No major safety concerns were detected in the 68 healthy adults vaccinated with PO and/or ID BCG. Although both PO and ID BCG could induce systemic Th1 responses capable of IFN-γ production, ID BCG more strongly induced systemic Th1 responses. In contrast, stronger mucosal responses (TB-specific secretory IgA and bronchoalveolar lavage T cells) were induced by PO BCG vaccination. To generate preliminary data comparing the early gene signatures induced by mucosal and systemic BCG vaccination, CD4+ memory T cells were isolated from subsets of BCG vaccinated subjects pre- (Day 0) and post-vaccination (Days 7 and 56), rested or stimulated with BCG infected dendritic cells, and then studied by Illumina BeadArray transcriptomal analysis. Notably, distinct gene expression profiles were identified both on Day 7 and Day 56 comparing the PO and ID BCG vaccinated groups by GSEA analysis. Future correlation analyses between specific gene expression patterns and distinct mucosal and systemic immune responses induced will be highly informative for TB vaccine development.
ABSTRACT. In this study, expression levels of miRNAs (miRNAs), miR-375 and miR-7, were detected in different tissues of cattle to determine whether adenohypophysis-prefer or exclusively expressed miRNAs, and target genes could be predicted by TargetScan, RNA22, and other software. Target genes related to pituitary function or reproductive traits were identified using a dual-luciferase assay. miR-375 and miR-7 were expressed differently in various tissues. miR-375 and miR-7 showed higher expression in the adenohypophysis, and there was a significant difference compared with expression in other tissues (P < 0.01). The binding sites for miR-7 were the mRNAs of bone morphogenetic protein receptor type II (BMPR2), prostaglandin F2 receptor negative regulator, gonadotropin-releasing hormone receptor, follicle-stimulating hormoneβ, somatostatin receptor 1, and interleukin-1β by bioinformatic analysis; similarly, the mRNAs of BMPR2 and leptin contained binding sites for miR-375, suggesting that these genes are affected by miR-7 or miR-375. Dual-luciferase reporter assays showed that miR-7 regulated (2015) prostaglandin F2 receptor negative regulator expression, while miR-375 regulated BMPR2 expression. The mutated plasmid and miRNA mimics were used to co-transfect NIH3T3 cells; luciferase reporter assays showed that the inhibition of luciferase activity in the wild-type cells dramatically decreased from 75 to 26% with a 3-5-nucleotide mismatch mutation into the seed region of miR-7. miR-375 had nearly lost the ability to inhibit luciferase activity, suggesting that GTCTTCC is the site of interaction between miR-7 and the prostaglandin F2 receptor negative regulator sequence and that GAACAAA is the site of interaction between miR-375 and the BMPR2 sequence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.