Natural products have been used for centuries to treat various human ailments. In recent decades, multi-drug combinations that utilize natural products to synergistically enhance the therapeutic effects of cancer drugs have been identified and have shown success in improving treatment outcomes. While drug synergy research is a burgeoning field, there are disagreements on the definitions and mathematical parameters that prevent the standardization and proper usage of the terms synergy, antagonism, and additivity. This contributes to the relatively small amount of data on the antagonistic effects of natural products on cancer drugs that can diminish their therapeutic efficacy and prevent cancer regression. The ability of natural products to potentially degrade or reverse the molecular activity of cancer therapeutics represents an important but highly under-emphasized area of research that is often overlooked in both pre-clinical and clinical studies. This review aims to evaluate the body of work surrounding the antagonistic interactions between natural products and cancer therapeutics and highlight applications for high-throughput screening (HTS) and deep learning techniques for the identification of natural products that antagonize cancer drug efficacy.
A major hallmark of cancer is the metabolic reprogramming of cancer cells to fuel tumor growth and proliferation. Various plant-derived bioactive compounds efficiently target the metabolic vulnerabilities of cancer cells and exhibit potential as emerging therapeutic agents. Due to their safety and common use as dietary components, they are also ideal for cancer prevention. However, to render their use as efficient as possible, the mechanism of action of these phytochemicals needs to be well characterized. Stable isotope tracing is an essential technology to study the molecular mechanisms by which nutraceuticals modulate and target cancer metabolism. The use of positionally labeled tracers as exogenous nutrients and the monitoring of their downstream metabolites labeling patterns enable the analysis of the specific metabolic pathway activity, via the relative production and consumption of the labeled metabolites. Although stable isotope tracing metabolomics is a powerful tool to investigate the molecular activity of bioactive compounds as well as to design synergistic nutraceutical combinations, this methodology is still underutilized. This review aims to investigate the research efforts and potentials surrounding the use of stable isotope tracing metabolomics to examine the metabolic alterations mediated by bioactive compounds in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.