ABSTRACT. After complete sequencing of its genome and annotation of the majority of its ~32,000 genes, rice genome has become the model genome among the cereal genomes, and the focus has shifted from structural to functional genomics and application of genomicderived information in rice breeding. During the past 2 decades, intensive worldwide efforts have led to significant improvements in rice. An abundance of molecular markers and information related to many genes/quantitative trait loci that control agronomically important traits such as yield, quality, and biotic and abiotic stress tolerance have been identified. Bridging the application gap between quantitative trait locus identification and marker-assisted selection breeding is an urgent, arduous, and long-term task. Marker development, allele mining, gene discovery, and molecular breeding have progressed to a great extent because of the rapid development of next-generation sequencing, largescale high-density genotyping, and genome-wide selection strategies. The availability of high-density markers and the rapidly decreasing cost of genotyping have facilitated marker-assisted selection of many traits that were previously not possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.