The Sun moves through the local interstellar medium, continuously emitting ionized, supersonic solar wind plasma and carving out a cavity in interstellar space called the heliosphere. The recently launched Interstellar Boundary Explorer (IBEX) spacecraft has completed its first all-sky maps of the interstellar interaction at the edge of the heliosphere by imaging energetic neutral atoms (ENAs) emanating from this region. We found a bright ribbon of ENA emission, unpredicted by prior models or theories, that may be ordered by the local interstellar magnetic field interacting with the heliosphere. This ribbon is superposed on globally distributed flux variations ordered by both the solar wind structure and the direction of motion through the interstellar medium. Our results indicate that the external galactic environment strongly imprints the heliosphere.
[1] Empirically derived kappa distributions are becoming increasingly widespread in space physics as the power law nature of various suprathermal tails is melded with more classical quasi-Maxwellian cores. Two different mathematical definitions of kappa distributions are commonly used and various authors characterize the power law nature of suprathermal tails in different ways. In this study we examine how kappa distributions arise naturally from Tsallis statistical mechanics, which provides a solid theoretical basis for describing and analyzing complex systems out of equilibrium. This analysis exposes the possible values of kappa, which are strictly limited to certain ranges. We also develop the concept of temperature out of equilibrium, which differs significantly from the classical equilibrium temperature. This analysis clarifies which of the kappa distributions has primacy and, using this distribution, the kinetic and physical temperatures become one, both in and out of equilibrium. Finally, we extract the general relation between both types of kappa distributions and the spectral indices commonly used to parameterize space plasmas. With this relation, it is straightforward to compare both spectral indices from various space physics observations, models, and theoretical studies that use kappa distributions on a consistent footing that minimizes the chances for misinterpretation and error. Now that the connection is complete between empirically derived kappa distributions and Tsallis statistical mechanics, the full strength and capability of Tsallis statistical tools are available to the space physics community for analyzing and understanding the kappa-like properties of the various particle and energy distributions observed in space.
In this paper we examine the physical foundations and theoretical development of the kappa distribution, which arises naturally from non-extensive Statistical Mechanics. The kappa distribution provides a straightforward replacement for the Maxwell distribution when dealing with systems in stationary states out of thermal equilibrium, commonly found in space and astrophysical plasmas. Prior studies have used a variety of inconsistent, and sometimes incorrect, formulations, which have led to significant confusion about these distributions. Therefore, in this study, we start from the N -particle phase space distribution and develop seven formulations for kappa distributions that range from the most general to several specialized versions that can be directly used with common types of space data. Collectively, these formulations and their guidelines provide a "toolbox" of useful and statistically well-grounded equations for future space physics analyses that seek to apply kappa distributions in data analysis, simulations, modeling, theory, and other work.
The solar wind emanating from the Sun interacts with the local interstellar medium (LISM), forming the heliosphere. Hydrogen energetic neutral atoms (ENAs) produced by the solar-interstellar interaction carry important information about plasma properties from the boundaries of the heliosphere, and are currently being measured by NASA's Interstellar Boundary Explorer (IBEX). IBEX observations show the existence of a “ribbon” of intense ENA emission projecting a circle on the celestial sphere that is centered near the local interstellar magnetic field (ISMF) vector. Here we show that the source of the IBEX ribbon as a function of ENA energy outside the heliosphere, uniquely coupled to the draping of the ISMF around the heliopause, can be used to precisely determine the magnitude (2.93 ± 0.08 μG) and direction (227.°28 ± 0.°69, 34.°62 ± 0.°45 in ecliptic longitude and latitude) of the pristine ISMF far (∼1000 AU) from the Sun. We find that the ISMF vector is offset from the ribbon center by ∼8.°3 toward the direction of motion of the heliosphere through the LISM, and their vectors form a plane that is consistent with the direction of deflected interstellar neutral hydrogen, thought to be controlled by the ISMF. Our results yield draped ISMF properties close to that observed by Voyager 1, the only spacecraft to directly measure the ISMF close to the heliosphere, and give predictions of the pristine ISMF that Voyager 1 has yet to sample.
Simulations of energetic neutral atom (ENA) maps predict flux magnitudes that are, in some cases, similar to those observed by the Interstellar Boundary Explorer (IBEX) spacecraft, but they miss the ribbon. Our model of the heliosphere indicates that the local interstellar medium (LISM) magnetic field (B(LISM)) is transverse to the line of sight (LOS) along the ribbon, suggesting that the ribbon may carry its imprint. The force-per-unit area on the heliopause from field line draping and the LISM ram pressure is comparable with the ribbon pressure if the LOS approximately 30 to 60 astronomical units and B(LISM) approximately 2.5 microgauss. Although various models have advantages in accounting for some of the observations, no model can explain all the dominant features, which probably requires a substantial change in our understanding of the processes that shape our heliosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.