This paper presents a grammatical evolution (GE)-based methodology to automatically design third generation artificial neural networks (ANNs), also known as spiking neural networks (SNNs), for solving supervised classification problems. The proposal performs the SNN design by exploring the search space of three-layered feedforward topologies with configured synaptic connections (weights and delays) so that no explicit training is carried out. Besides, the designed SNNs have partial connections between input and hidden layers which may contribute to avoid redundancies and reduce the dimensionality of input feature vectors. The proposal was tested on several well-known benchmark datasets from the UCI repository and statistically compared against a similar design methodology for second generation ANNs and an adapted version of that methodology for SNNs; also, the results of the two methodologies and the proposed one were improved by changing the fitness function in the design process. The proposed methodology shows competitive and consistent results, and the statistical tests support the conclusion that the designs produced by the proposal perform better than those produced by other methodologies.
Artificial Neural Networks (ANNs) have been successfully used in Pattern Recognition tasks. Evolutionary Spiking Neural Networks (ESNNs) constitute an approach to design thirdgeneration ANNs (also known as Spiking Neural Networks, SNNs) involving Evolutionary Algorithms (EAs) to govern some intrinsic aspects of the networks, such as topology, connections and/or parameters. Concerning the practicality of the networks, a rather simple standard is commonly used; restricted feed-forward fully-connected network topologies deprived from more complex connections are usually considered. Notwithstanding, a wider prospect of configurations in contrast to standard network topologies is available for research. In this paper, ESNNs are evolved to solve pattern classification tasks, using an EA-based algorithm known as Grammatical Evolution (GE). Experiments demonstrate competitive results and a distinctive variety of network designs when compared to a more traditional approach to design ESNNs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.