Abstract. Factorisation (also known as “factor separation”) is widely used in the analysis of numerical simulations. It allows changes in properties of a system to be attributed to changes in multiple variables associated with that system. There are many possible factorisation methods; here we discuss three previously proposed factorisations that have been applied in the field of climate modelling: the linear factorisation, the Stein and Alpert (1993) factorisation, and the Lunt et al. (2012) factorisation. We show that, when more than two variables are being considered, none of these three methods possess all four properties of “uniqueness”, “symmetry”, “completeness”, and “purity”. Here, we extend each of these factorisations so that they do possess these properties for any number of variables, resulting in three factorisations – the “linear-sum” factorisation, the “shared-interaction” factorisation, and the “scaled-residual” factorisation. We show that the linear-sum factorisation and the shared-interaction factorisation reduce to be identical in the case of four or fewer variables, and we conjecture that this holds for any number of variables. We present the results of the factorisations in the context of three past studies that used the previously proposed factorisations.
Abstract. Factorisation is widely used in the analysis of numerical simulations. It allows changes in properties of a system to be attributed to changes in multiple variables associated with that system. There are many possible factorisation methods; here we discuss three previously-proposed factorisations that have been applied in the field of climate modelling: the linear factorisation, the Stein and Alpert (1993) factorisation, and the Lunt et al (2012) factorisation. We show that, when more than two variables are being considered, none of these three methods possess all three properties of uniqueness, symmetry, and completeness. Here, we extend each of these factorisations so that they do possess these properties for any number of variables, resulting in three factorisations – the linear-sum factorisation, the shared-interaction factorisation, and the scaled-total factorisation. We show that the linear-sum factorisation and the shared-interaction factorisation reduce to be identical. We present the results of the factorisations in the context of studies that used the previously-proposed factorisations. This reveals that only the linear-sum/shared-interaction factorisation possesses a fourth property – boundedness, and as such we recommend the use of this factorisation in applications for which these properties are desirable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.