We report here the identification of a gene associated with the hyperparathyroidism-jaw tumor (HPT-JT) syndrome. A single locus associated with HPT-JT (HRPT2) was previously mapped to chromosomal region 1q25-q32. We refined this region to a critical interval of 12 cM by genotyping in 26 affected kindreds. Using a positional candidate approach, we identified thirteen different heterozygous, germline, inactivating mutations in a single gene in fourteen families with HPT-JT. The proposed role of HRPT2 as a tumor suppressor was supported by mutation screening in 48 parathyroid adenomas with cystic features, which identified three somatic inactivating mutations, all located in exon 1. None of these mutations were detected in normal controls, and all were predicted to cause deficient or impaired protein function. HRPT2 is a ubiquitously expressed, evolutionarily conserved gene encoding a predicted protein of 531 amino acids, for which we propose the name parafibromin. Our findings suggest that HRPT2 is a tumor-suppressor gene, the inactivation of which is directly involved in predisposition to HPT-JT and in development of some sporadic parathyroid tumors.
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized by the combined occurrence of parathyroid, pancreatic islet and anterior pituitary tumours. To facilitate a screening programme for MEN1, we investigated 709 people (364 males and 345 females, age range 1-84 years) from 62 MEN1 families, and 36 non-familial MEN1 patients. Of those investigated, 220 (95 males and 125 females, age range 8-79 years) suffered from MEN1. Parathyroid, pancreatic and pituitary tumours occurred in 95%, 41% and 30% of the patients, respectively. Parathyroid tumours were the first manifestation of MEN1 in 87% of patients, and amongst the pituitary and pancreatic tumours, somatotrophinomas and gastrinomas were more common in patients above the age of 40 years, whilst insulinomas occurred more frequently in patients below the age of 40 years. Biochemical screening indicated that the penetrance of MEN1 by the ages of 20, 35 and 50 years was 43%, 85% and 94%, respectively, and that the development of MEN1 was confined to first-degree relatives in 91% of patients and to second-degree relatives in 9% of patients. These findings have helped to define a proposed screening programme for MEN1.
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized by tumors of the parathyroids, pancreatic islets, and anterior pituitary. The MEN1 gene, on chromosome 11q13, has recently been cloned, and mutations have been identified. We have characterized such MEN1 mutations, assessed the reliability of SSCP analysis for the detection of these mutations, and estimated the age-related penetrance for MEN1. Sixty-three unrelated MEN1 kindreds (195 affected and 396 unaffected members) were investigated for mutations in the 2,790-bp coding region and splice sites, by SSCP and DNA sequence analysis. We identified 47 mutations (12 nonsense mutations, 21 deletions, 7 insertions, 1 donor splice-site mutation, and 6 missense mutations), that were scattered throughout the coding region, together with six polymorphisms that had heterozygosity frequencies of 2%-44%. More than 10% of the mutations arose de novo, and four mutation hot spots accounted for >25% of the mutations. SSCP was found to be a sensitive and specific mutational screening method that detected >85% of the mutations. Two hundred and one MEN1 mutant-gene carriers (155 affected and 46 unaffected) were identified, and these helped to define the age-related penetrance of MEN1 as 7%, 52%, 87%, 98%, 99%, and 100% at 10, 20, 30, 40, 50, and 60 years of age, respectively. These results provide the basis for a molecular-genetic screening approach that will supplement the clinical evaluation and genetic counseling of members of MEN1 families.
Familial benign hypercalcemia (FBH) and neonatal hyperparathyroidism (NHPT) are disorders of calcium homeostasis that are associated with missense mutations of the calcium-sensing receptor (CaR). We have undertaken studies to characterize such CaR mutations in FBH and NHPT and to explore methods for their more rapid detection. Nine unrelated kindreds (39 affected, 32 unaffected members) with FBH and three unrelated children with sporadic NHPT were investigated for mutations in the 3,234-bp coding region of the CaR gene by DNA sequencing. Six novel heterozygous (one nonsense and five missense) mutations were identified in six of the nine FBH kindreds, and two de novo heterozygous missense mutations and one homozygous frame-shift mutation were identified in the three children with NHPT. Our results expand the phenotypes associated with CaR mutations to include sporadic NHPT. Singlestranded conformational polymorphism analysis was found to be a sensitive and specific mutational screening method that detected > 85% of these CaR gene mutations. The single-stranded conformational polymorphism identification of CaR mutations may help in the distinction of FBH from mild primary hyperparathyroidism which can be clinically difficult. Thus, the results of our study will help to supplement the clinical evaluation of some hypercalcemic patients and to elucidate further the structure-function relation-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.