Sparse sampling schemes have the potential to reduce image acquisition time by reconstructing a desired image from a sparse subset of measured pixels. Moreover, dynamic sparse sampling methods have the greatest potential because each new pixel is selected based on information obtained from previous samples. However, existing dynamic sampling methods tend to be computationally expensive and therefore too slow for practical application. In this paper, we present a supervised learning based algorithm for dynamic sampling (SLADS) that uses machine-learning techniques to select the location of each new pixel measurement. SLADS is fast enough to be used in practical imaging applications because each new pixel location is selected using a simple regression algorithm. In addition, SLADS is accurate because the machine learning algorithm is trained using a total reduction in distortion metric which accounts for distortion in a neighborhood of the pixel being sampled. We present results on both computationally-generated synthetic data and experimentallycollected data that demonstrate substantial improvement relative to state-of-the-art static sampling methods.
In scanning microscopy based imaging techniques, there is a need to develop novel data acquisition schemes that can reduce the time for data acquisition and minimize sample exposure to the probing radiation. Sparse sampling schemes are ideally suited for such applications where the images can be reconstructed from a sparse set of measurements. In particular, dynamic sparse sampling based on supervised learning has shown promising results for practical applications. However, a particular drawback of such methods is that it requires training image sets with similar information content which may not always be available.In this paper, we introduce a Supervised Learning Approach for Dynamic Sampling (SLADS) algorithm that uses a deep neural network based training approach. We call this algorithm SLADS-Net. We have performed simulated experiments for dynamic sampling using SLADS-Net in which the training images either have similar information content or completely different information content, when compared to the testing images. We compare the performance across various methods for training such as leastsquares, support vector regression and deep neural networks. From these results we observe that deep neural network based training results in superior performance when the training and testing images are not similar. We also discuss the development of a pre-trained SLADS-Net that uses generic images for training. Here, the neural network parameters are pre-trained so that users can directly apply SLADS-Net for imaging experiments.
The total number of data points required for image generation in Raman microscopy was greatly reduced using sparse sampling strategies, in which the preceding set of measurements informed the next most information-rich sampling location. Using this approach, chemical images of pharmaceutical materials were obtained with >99% accuracy from 15.8% sampling, representing an ~6-fold reduction in measurement time relative to full field of view rastering with comparable image quality. This supervised learning approach to dynamic sampling (SLADS) has the distinct advantage of being directly compatible with standard confocal Raman instrumentation. Furthermore, SLADS is not limited to Raman imaging, potentially providing time-savings in image reconstruction whenever the single-pixel measurement time is the limiting factor in image generation.
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.