Meloidogyne species pose a significant threat to crop production in Africa due to the losses they cause in a wide range of agricultural crops. The direct and indirect damage caused by various Meloidogyne species results in delayed maturity, toppling, reduced yields and quality of crop produce, high costs of production and therefore loss of income. In addition, emergence of resistance-breaking Meloidogyne species has partly rendered various pest management programmes already in place ineffective, therefore putting food security of the continent at risk. It is likely that more losses may be experienced in the future due to the on-going withdrawal of nematicides. To adequately address the threat of Meloidogyne species in Africa, an accurate assessment and understanding of the species present, genetic diversity, population structure, parasitism mechanisms and how each of these factors contribute to the overall threat posed by Meloidogyne species is important. Thus, the ability to accurately characterize and identify Meloidogyne species is crucial if the threat of Meloidogyne species to crop production in Africa is to be effectively tackled. This review discusses the use of traditional versus molecular-based identification methods of Meloidogyne species and how accurate identification using a polyphasic approach can negate the eminent threat of root knot nematodes in crop production. The potential threat to Africa posed by highly damaging and resistance-breaking populations of 'emerging' Meloidogyne species is also examined.
The asexual root-knot nematodes (RKNs) (Meloidogyne spp.) exemplified by Meloidogyne incognita are widespread and damaging pests in tropical and subtropical regions worldwide. Comparison of amplification products of two adjacent polymorphic regions of the mitochondrial genome using DNA extracts of characterized RKN strains, including 15 different species, indicate that several species are derived from the same or closely related female lineages. Nevertheless, M. javanica, M. enterolobii, M. incognita, and other key species could each be assigned unique mitochondrial haplotypes based on polymerase chain reaction fragment size and restriction cleavage patterns. M. arenaria isolates did not group as a single haplotype, consistent with other reports of diversity within this species. To test the utility of this assay, we characterized ethanol-preserved samples from 103 single-species isolates from four countries in sub-Saharan Africa (Benin, Nigeria, Kenya, and Tanzania). Mitochondrial haplotypes corresponding to M. javanica and M. incognita were the most prevalent. Samples from western Africa included several instances of M. enterolobii but this species was not detected in samples from East Africa. This protocol provides progress toward a standardized strategy for identification of RKN species from small, preserved samples and a rational starting point for classifying species present in regions where previous knowledge has been limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.