Storm surges are responsible for much of the damage and loss of life associated with landfalling tropical cyclones (TCs). Thus, understanding the characteristics of risk associated with TC storm surges for the coastal regions of China is of great interest. Based on a comprehensive assessment of hazard indices for TC storm surges and vulnerability indices for coastal counties, we obtained a risk assessment for coastal regions of China as a county-level unit. The hazard index was calculated using a model based on the parameters of a TC landfall frequency index (f) and maximum storm surge elevation (MSSE). The MSSE was calculated from the TC maximum sustained wind and tide gauge records using a regression function. Vulnerability indices were obtained from indices on socioeconomics, land use, the ecological environment, and resilience. From this study, it can be concluded that the hazard level of TC storm surges increases from north to south along the Chinese coast, the vulnerabilities have significant spatial heterogeneity, and coastal regions of China can be divided into four zones of risk level. The results of this study can provide scientific support for marine disaster mitigation and decision making. Additionally, the risk assessment methodology used here for storm surges could be extended and applied to other coastal areas.
The abundance of Calanus sinicus eggs, nauplii, copepodites and adults and chlorophyll a (Chl‐a) concentration were studied across tidal fronts in October 2000, and May and June 2001 in the Yellow Sea, China. The aim of the study was to evaluate the role of tidal fronts in the ecology of C. sinicus. The hydrographic tidal fronts were identified by the horizontal temperature gradient in the bottom layer and the temperature profiles across the fronts. The survey results showed that the concentration of Chl‐a was high in the vicinity of the fronts, particularly in spring and early summer. The abundance of C. sinicus eggs and nauplii was usually higher in the tidal fronts than in the adjacent areas. In May and June 2001, the abundance of copepodites and adults of C. sinicus peaked in the tidal front. In June 2001 and October 2000, many copepodites and adults were found in stratified region.
Soil salinization constitutes an environmental hazard worldwide. The Bohai Sea coastal wetland area is experiencing dramatic soil salinization, which is affecting its economic development. This study focused on the spatial variation and distribution characteristics of soil salinity in this area using geostatistical analysis combined with the kriging interpolation method, based on a large-scale field investigation and layered soil sampling (0-30, 30-60 and 60 -100 cm). The results revealed that soil salinity in these layers demonstrated strong variability, obvious spatial structure characteristics and strong spatial autocorrelation. Soil salinity displayed a significant zonal distribution, gradually decreasing with increasing distance from the coastline. Apart from the northern part of the study area, which appeared to be not affected by soil salinization, there were varying degrees of soil salinization in nearly 70% of the total area. With increasing soil depth, the areas of non-salinized and mild salinized soil gradually decreased, while those of moderate salinized and strong salinized soils increased. The area of saline soil first decreased and then increased. The study area could be divided into four management zones according to soil salinities in the top 1-m soil body, and utilization measures, adapted to local conditions, were proposed for each zone. The results of our study present an important theoretical basis for the improvement of saline soils, for wetland re-vegetation and for the sustainable utilization of soil resources in the Bohai Sea coastal wetland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.