Earlier studies of C 60 adsorption on Au(111) reported many interesting and complex features. We have performed coordinated low-energy electron diffraction, scanning tunneling microscopy (STM), and density functional theory studies to elucidate some of the details of the monolayer commensurate (2Ý3 × 2Ý3)R30°p hase. We have identified the adsorption geometries of the two states that image as dim and bright in STM. These consist of a C 60 molecule with a hexagon side down in a vacancy (hex-vac) and a C 60 molecule with a carbon-carbon 6:6 bond down on a top site (6:6-top), respectively. We have studied the detailed geometries of these states and find that there is little distortion of the C 60 molecules, but there is a rearrangement of the substrate near the C 60 molecules. The two types of molecules differ in height, by about 0.7Å, which accounts for most of the difference in their contrast in the STM images. The monolayer displays dynamical behavior, in which the molecules flip from bright to dim, and vice versa. We interpret this flipping as the result of the diffusion of vacancies in the surface layers of the substrate. Our measurements of the dynamics of this flipping from one state to the other indicate that the activation energy is 0.66 ± 0.03 eV for flips that involve nearest-neighbor C 60 molecules, and 0.93 ± 0.03 for more distant flips. Based on calculated activation energies for vacancies diffusing in Au, we interpret these to be a result of surface vacancy diffusion and bulk vacancy diffusion. These results are compared to the similar system of Ag(111)-(2Ý3 × 2Ý3)R30°-C 60 . In both systems, the formation of the commensurate C 60 monolayer produces a large number of vacancies in the top substrate layer that are highly mobile, effectively melting the interfacial metal layer at temperatures well below their normal melting temperatures.
The structure of the quasicrystalline approximant Al 13 Co 4 (100) has been determined by surface x-ray diffraction (SXRD) and complementary density-functional-theory (DFT) calculations. Thanks to the use of a two-dimensional pixel detector, which speeds up the data acquisition enormously, an exceptionally large set of experimental data, consisting of 124 crystal truncation rods, has been collected and used to refine this complex structure of large unit cell and low symmetry. Various models were considered for the SXRD analysis. The best fit is consistent with a surface termination at the puckered type of planes but with a depletion of the protruding Co atoms. The surface energy of the determined surface model was calculated using DFT, and it takes a rather low value of 1.09 J/m 2. The results for the atomic relaxation of surface planes found by SXRD or DFT were in excellent agreement. This work opens up additional perspectives for the comprehension of related quasicrystalline surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.