A competitive enzyme-linked immunosorbent assay (cELISA) was developed to detect antibodies to the group antigen of bluetongue virus (BTV). The epitope recognized by the BTV-specific monoclonal antibody was confirmed, by immunofluorescence staining of monolayers of virus-infected Vero cells, to be present on BTV serotypes 2, 10, 11, 13, and 17 but not on epizootic hemorrhagic disease virus (EHDV) serotypes 1 and 2. Sera from BTV-inoculated ruminants and rabbits were used to evaluate the cELISA and to compare its specificity and sensitivity with that of the conventional BTV-specific agar gel immunodiffusion (AGID) and serum neutralization (SN) tests. Rabbit antisera to the 5 serotypes of BTV present in the United States had cELISA titers (inverse of the final dilution of serum that gave greater than 20% inhibition) that ranged from 32 to greater than 1.024. Seroconversion of the 8 calves and lambs inoculated with BTV was detected by all 3 serologic tests (SN, AGID, cELISA) by 6 weeks after inoculation. Specificity of the cELISA test was confirmed with bovine sera that contained neutralizing antibodies to EHDV but not to the 5 serotypes of BTV present in the United States; these sera gave positive results by AGID test but were negative by cELISA. The sensitivity and specificity of the cELISA test was further confirmed by analysis of a panel of bovine test sera supplied by the National Veterinary Services Laboratories, indicating that the cELISA is a superior test for detection of BTV group-specific antibodies in sera from ruminants in the United States.
1. Construction of transgenic mice is predicated upon inserting foreign DNA into native host DNA and having this expressed in the germline. This may be accomplished by nuclear injection, retroviral vectors or use of embryonic stem (ES) cells. 2. Expression of novel structural genes may be reasonably directed by the judicious use of an accompanying promoter/enhancer sequence. Insertion of foreign genes may be designed to result in phenotypic expression of a novel trait or ablation of a native gene or gene product. 3. Resulting transgenic mice offer significant utility as models of human diseases and a unique opportunity for investigating immune and metabolic pathways as well as for exploring mechanisms of development, mutagenesis and teratogenesis. 4. Use of transgenic animals in drug development has considerable potential although realization of this potential will take time. Constructing transgenics is only the first step in a complex series of events culminating in understanding the consequences of imposing novel genetic material on an intact, highly integrated living system. Practical use of transgenic animals will depend upon substantial effort being spent in investigating and validating the phenotypic consequences of gene transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.