The zona incerta (ZI) is a subthalamic nucleus connected to several structures, some of them known to be involved with antinociception. The ZI itself may be involved with both antinociception and nociception. The antinociceptive effects of stimulating the ZI with glutamate using the rat tail-flick test and a rat model of incision pain were examined. The effects of intraperitoneal antagonists of acetylcholine, noradrenaline, serotonin, dopamine, or opioids on glutamate-induced antinociception from the ZI in the tail-flick test were also evaluated. The injection of glutamate (7 μg/0.25 μl) into the ZI increased tail-flick latency and inhibited post-incision pain, but did not change the animal performance in a Rota-rod test. The injection of glutamate into sites near the ZI was non effective. The glutamate-induced antinociception from the ZI did not occur in animals with bilateral lesion of the dorsolateral funiculus, or in rats treated intraperitoneally with naloxone (1 and 2 m/kg), methysergide (1 and 2 m/kg) or phenoxybenzamine (2 m/kg), but remained unchanged in rats treated with atropine, mecamylamine, or haloperidol (all given at doses of 1 and 2 m/kg). We conclude that the antinociceptive effect evoked from the ZI is not due to a reduced motor performance, is likely to result from the activation of a pain-inhibitory mechanism that descends to the spinal cord via the dorsolateral funiculus, and involves at least opioid, serotonergic and α-adrenergic mechanisms. This profile resembles the reported effects of these antagonists on the antinociception caused by stimulating the periaqueductal gray or the pedunculopontine tegmental nucleus.
The electrical stimulation of the occipital (OC) or retrosplenial (RSC) cortex produces antinociception in the rat tail-flick and formalin tests. This study examined the antinociceptive effects of stimulating the OC or RSC in a rat model of post-incision pain. The involvement of the anterior pretectal nucleus (APtN) as intermediary for the effect of OC or RSC stimulation was also evaluated because the OC and RSC send inputs to the APtN, which is implicated in antinociception and nociception. It is shown that a 15-s period of electrical stimulation of the OC or RSC significantly reduced post-incision pain for less than 10 min and at least 15 min, respectively. The injection of 2% lidocaine (0.25 μl), naloxone (10 ng/0.25 μl), methysergide (40 pg/0.25 μl), or atropine (100 ng/0.25 μl) into the APtN produced a further increase in post-incision pain. The effect of RSC stimulation was shorter and less intense in rats pretreated with lidocaine, methysergide or naloxone. The effect of OC stimulation was shorter and less intense in lidocaine-treated rats, but remained unchanged in rats pretreated with methysergide or naloxone in the APtN. The effects of stimulating the OC or RSC were not changed in rats treated with atropine. We conclude that stimulation-induced antinociception from the RSC or OC in rat post-incision pain activates distinct descending pain inhibitory pathways. The pathway activated from the RSC utilizes serotonergic and opioid mediation in the APtN, whereas stimulation of the OC utilizes a non-serotonergic, non-cholinergic and non-opioid mediation in the same nucleus.
The mechanisms through which electro-acupuncture (EA) and tricyclic antidepressants produce analgesia seem to be complementary: EA inhibits the transmission of noxious messages by activating supraspinal serotonergic and noradrenergic neurons that project to the spinal cord, whereas tricyclic antidepressants affect pain transmission by inhibiting the reuptake of norepinephrine and serotonin at the spinal level. This study utilized the tail-flick test and a model of post-incision pain to compare the antihyperalgesic effects of EA at frequencies of 2 or 100 Hz in rats treated with intraperitoneal or intrathecal amitriptyline (a tricyclic antidepressant). A gradual increase in the tail-flick latency (TFL) occurred during a 20-min period of EA. A strong and long-lasting reduction in post-incision hyperalgesia was observed after stimulation; the effect after 2 Hz lasting longer than after 100-Hz EA. Intraperitoneal or intrathecal amitriptyline potentiated the increase in TFL in the early moments of 2- or 100-Hz EA, and the intensity of the antihyperalgesic effect of 100-Hz EA in both the incised and non-incised paw. In contrast, it did not significantly change the intensity of the antihyperalgesic effect of 2-Hz EA. The EA-induced antihyperalgesic effects lasted longer after intraperitoneal or intrathecal amitriptyline than after saline, with this effect of amitriptyline being more evident after 100- than after 2-Hz EA. The synergetic effect of amitriptyline and EA against post-incision pain shown here may therefore represent an alternative for prolonging the efficacy of EA in the management of post-surgical clinical pain.
Amitriptyline converts non-responder rats to rats that respond to electroacupuncture with analgesia in a model of thermal phasic pain and anti-hyperalgesia in a model of incision pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.