[1] Major strike slip faults juxtapose geologically dissimilar terrain which may vary in mechanical properties, leading to an asymmetric pattern of strain accumulation. We present new GPS data on the Carrizo segment of the San Andreas Fault, separating the Salinian block southwest of the fault from Franciscan terrane northeast of the fault, to better quantify asymmetric strain accumulation. We also present a series of finite element models to investigate the possible role of variable elastic layer thickness and material properties of the upper crust. The geodetic data are well fit with a simple model comprising a weak upper crustal zone 10-25 km wide northeast of the fault. This model is also consistent with geologic data on the distribution of major rock types and corresponding laboratory data on their material properties, as well as paleoseismic, seismic and magnetotelluric data. Using this model, we estimate a ''long-term'' (average over several seismic cycles) slip rate for the San Andreas Fault of 36 À1.5 +2 mm/yr in agreement with the known Holocene rate within uncertainties, and a viscosity for the combined lower crust/upper mantle of 2-5 Â 10
S U M M A R YInSAR is particularly sensitive to vertical displacements, which can be important in distinguishing between mechanisms responsible for the postseismic response to large earthquakes (afterslip, viscoelastic relaxation). We produce maps of the surface displacements resulting from the postseismic response to the 2002 Denali Fault earthquake, using data from the Canadian Radarsat-1 satellite from the periods summer 2003, summer 2004 and summer 2005. A peak-to-trough signal of amplitude 4 cm in the satellite line of sight was observed between summer 2003 and summer 2004. By the period between summer 2004 and summer 2005, the displacement rate had dropped below the threshold required for observation with InSAR over a single year. The InSAR observations show that the principal postseismic relaxation process acted at a depth of ∼50 km, equivalent to the top of the mantle. However, the observations are still incapable of distinguishing between distributed (viscoelastic relaxation) and localized (afterslip) deformation. The imposed coseismic stresses are highest in the lower crust and, assuming a Maxwell rheology, a viscosity ratio of at least 5 between lower crust and upper mantle is required to explain the contrast in behaviour. The lowest misfits are produced by mixed models of viscoelastic relaxation in the mantle and shallow afterslip in the upper crust. Profiles perpendicular to the fault show significant asymmetry, which is consistent with differences in rheological structure across the fault.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.