Photolysis of dimethyl sulfoxide in a molecular beam with 210 and 222 nm photons reveals the decomposition mechanism and energy disposal in the products. Using vacuum ultraviolet light and a time-of-flight spectrometer, we identify CH 3 and CH 3 SO as primary fragments and CH 3 and SO as secondary fragments. From CH 3 quantum yield measurements, we find that secondary decomposition is minor for 222 nm photolysis, occurring in only about 10% of the fragments, but it increases to about 30% in the 210 nm photolysis. Laser-induced fluorescence measurements on the B 3 ⌺ Ϫ ←X 3 ⌺ Ϫ transition of SO in the 235 to 280 nm region determine the internal energy of that photoproduct. We compare our results to a simple statistical model that captures the essential features of the decomposition, predicting both the extent of secondary decomposition and the recoil energy of the primary and secondary methyl fragments.
We observe the photodissociation of SiH4 in a pulsed molecular beam after excitation with 125.1 nm vacuum ultraviolet light generated via resonant four-wave mixing in mercury vapor. Ultraviolet radiation from a Nd:YAG/dye laser combination ionizes the neutral photodissociation fragments and a time-of-flight mass spectrometer detects the ions. The photodissociation signal consists entirely of silicon atoms and silylidyne (SiH) in its first electronically excited state. We see no silylene (SiH2) or silyl radicals (SiH3). Thus, the photodissociation cleaves almost all of the silicon–hydrogen bonds, but the energetics of the dissociation require the production of at least one hydrogen molecule per dissociation event. These results imply that the high energy content of the initially excited Rydberg state prevents formation of the silylene and silyl radicals in stable vibronic states and that dissociation pathways exist that connect the Rydberg state directly to the corresponding silicon atom and silylidyne asymptotes. These pathways are likely to exist because of Jahn–Teller distortion from the initial Td symmetry. Very little of the available energy appears as kinetic energy of the fragments but rather as electronic excitation of the products. Our results differ from those of earlier studies that concluded silylene and silyl are the principle products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.