A comparison between thermal poling of silica in air and in vacuum is reported. It is shown that the second-order susceptibility and thickness of the nonlinear layer as well as their time evolution are highly dependent on the surrounding poling atmosphere. In the vacuum case a charge distribution (under the anode) more complex and broader than that for the air case has also been revealed by laser induced pressure pulse measurements. A multiple charge carrier model can explain the formation and evolution of the depletion region under the anode. The findings are relevant to achieve improved nonlinearities in fiber and waveguide devices.
We have used resonance methods to determine the variation of all the independent piezoelectric, elastic, and dielectric material coefficients, as well as the corresponding electromechanical coupling factors, of soft and hard doped piezoelectric lead zirconate titanate (PZT) ceramics with compositions near the morphotropic phase boundary, as a function of temperature ranging between −165 and 195°C. The material coefficients were obtained by analyzing the fundamental resonance of the impedance or admittance spectra as a function of frequency for several sample resonance geometries. The piezoelectric coefficients d33, −d31, and d15, as well as the dielectric permittivity coefficients ε11T and ε33T, generally increased with temperature for both soft and hard PZT samples. However, the elastic compliance coefficients s11E, −s12E, s33E, and s55E exhibited abnormal variations seen as broad peaks over parts of the tested temperature range. Additionally, thermal hystereses were observed in all the studied material coefficients over the temperature cycle. Finally, it was noted that, overall, the material coefficients of soft PZT varied significantly more than those of hard PZT under changing temperature conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.