Most island-arc magmatism appears to result from the lowering of the melting point of peridotite within the wedge of mantle above subducting slabs owing to the introduction of fluids from the dehydration of subducting oceanic crust. Volcanic rocks interpreted to contain a component of melt (not just a fluid) from the subducting slab itself are uncommon, but possible examples have been recognized in the Aleutian islands, Baja California, Patagonia and elsewhere. The geochemically distinctive rocks from these areas, termed 'adakites, are often associated with subducting plates that are young and warm, and therefore thought to be more prone to melting. But the subducting lithosphere in some adakite locations (such as the Aleutian islands) appears to be too old and hence too cold to melt. This implies either that our interpretation of adakite geochemistry is incorrect, or that our understanding of the tectonic context of adakites is incomplete. Here we present geochemical data from the Kamchatka peninsula and the Aleutian islands that reaffirms the slab-melt interpretation of adakites, but in the tectonic context of the exposure to mantle flow around the edge of a torn subducting plate. We conclude that adakites are likely to form whenever the edge of a subducting plate is warmed or ablated by mantle flow. The use of adakites as tracers for such plate geometry may improve our understanding of magma genesis and thermal structure in a variety of subduction-zone environments.
The role of the subducting lithospheric slab in the genesis of mantle-derived (primitive) magmas is investigated through a study of volcanic rocks formed in the tectonically strike-slip-dominated western Aleutian arc. Two types of chemically and petrologically distinctive primitive andesites have been found among the Miocenelate Pleistocene-age volcanic rocks in the western Aleutians. These are termed the ''Adak-type'' and ''Piip-type'' magnesian andesites. Trace element and isotopic characteristics indicate that Adak-type magnesian andesites (adakites) formed principally as small percentage melts of the basaltic portion of the subducting oceanic crust, leaving a clinopyroxene-garnet-rutile residual mineralogy. The resulting slab melt signature (high La/Yb, Sr) distinguishes Adak-type magnesian andesites from all other Aleutian volcanic rocks. Primitive characteristics (high Mg#, Cr, Ni) and intermediate compositions (ϳ59% SiO 2) of Adak-type magnesian andesites were acquired by interaction with peridotite and/or basalt in the mantle wedge. The absence of olivine phenocrysts from Adak-type magnesian andesites indicates that they were not equilibrated with peridotite and so are unlike Piip-type magnesian andesites, which appear to have equilibrated under low pressure and hydrous conditions in the subarc mantle. Piip-type magnesian andesites also contain a slab melt component, but reaction-equilibration with peridotite has lowered La/Yb and Sr to levels like those of common Aleutian volcanic rocks. Miocene-age calc-alkaline rocks of the Komandorsky Islands have chemical characteristics transitional between those of Adak-type magnesian andesites and common Aleutian volcanic rocks from the central and eastern arc. In a source mixture of depleted mantle wedge, slab melt, and sediment, the Komandorsky rocks have a relatively large contribution from the slab melt endmember. The strong slab melt signature among western Aleutian rocks is attributed to highly oblique convergence that produced a slow subduction path into the subarc mantle. Geochemically, the slab melt provided a high Sr, La/Yb, La/Ta, and low Ti/Hf endmember to the western Aleutian source mixture. The enhanced role for slab melting in the western Aleutians may be like that predicted for Archean systems and for modern systems where the subduction zone is warm. In this regard, Adak-type magnesian andesites are probably the appropriate analog to sanukitoids and other primitive andesitic rocks of Archean age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.