Introduction This paper is concerned with incentives for the take-up and use of e-vehicles that are in place in different European countries. Especially, it analyses Norway and Austria, in order to establish and understand factors influencing the competitiveness of e-vehicles and potential market penetration. Norway currently enjoys the world's largest take-up of electric cars per capita, achieved through an extensive package of incentives. Austria has used the concept of Model Regions with government support to stimulate market introduction. So far, this has been a less effective approach. Methods The paper brings in and combine analyses of national travel survey data and web surveys to e-vehicle owners and non-e-vehicle owners. It considers socio-economic factors including convenience and time savings due to e-vehicle policies. Results Analysing national travel surveys, we find a considerable potential for e-vehicles based on people's everyday travel. Social networks play a crucial role in spreading knowledge about this relatively new technology. The take-up of battery electric vehicles correlates relatively closely with the user value of e-vehicle incentives. The fiscal effects of evehicle incentives are non-trivial -especially in the longer run. The cost of lifting a new technology into the market by means of government incentives is significant. We point to the importance of a strategy for the gradual phasing out of evehicle policies in countries with large incentives when the cost of vehicles goes down and the technology improves. Conclusions Successful market uptake and expansion of electric vehicles requires massive, expensive and combined policies. Central government backing, long term commitment and market-oriented incentives help reduce the perceived risk for market players like car importers and allow the e-vehicle market to thrive. For countries with low e-vehicle market shares the potential is promising. Battery electric vehicles are already a real option for the majority of peoples' everyday trips and trip chains. However, their relative disadvantages must be compensated by means of incentives -at least in the initial market launch phase. Diffusion mechanisms play a sizeable role. The lack of knowledge in the population at large must be addressed.
In therapeutic flexible endoscopy a team of physician and assistant(s) is required to control all independent translations and rotations of the flexible endoscope and its instruments. As a consequence the physician lacks valuable force feedback information on tissue interaction, communication errors easily occur, and procedures are not cost-effective. Current tools are not suitable for performing therapeutic procedures in an intuitive and user-friendly way by one person. A shift from more invasive surgical procedures that require external incisions to endoluminal procedures that use the natural body openings could be expected if enabling techniques were available. This paper describes the design and evaluation of a robotic system which interacts with traditional flexible endoscopes to perform therapeutic procedures that require advanced maneuverability. The physician uses one multi-degree-of-freedom input device to control camera steering as well as shaft manipulation of the motorized flexible endoscope, while the other hand is able to manipulate instruments. We identified critical use aspects that need to be addressed in the robotic setup. A proof-of-principle setup was built and evaluated to judge the usability of our system. Results show that robotic endoscope control increases efficiency and satisfaction. Participants valued its intuitiveness, its accuracy, the feeling of being in control, and its single-person setup. Future work will concentrate on the design of a system that is fully functional and takes safety, cleanability, and easy positioning close to the patient into account.
Abstract. Undergraduates need a teaching style that fits their limited experience. Especially in systems engineering this is an issue, since systems engineering connects to so many different stakeholders with so many different concerns while the students have experienced only thus far only a few of these concerns and met only few stakeholders. Students need to become aware of the inherent ambiguities, uncertainties, and unknowns in the systems world, in contrast to the focused world of mono-disciplinary engineering. There is a difference between the more traditional engineering disciplines (mechanical, electrical, etc.) and the upcoming and broader disciplines like industrial design engineering and systems engineering itself.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.