Treatment units for radiosurgery, brachytherapy, implementation of seeds, and IMRT generate small high dose regions together with steep dose gradients of up to 30%-50% per mm. Such devices are used to treat small complex-shaped lesions, often located close to critical structures, by superimposing several single high dose regions. In order to test and verify these treatment techniques, to perform quality assurance tasks and to simulate treatment conditions as well as to collect input data for treatment planning, a GAFCHROMIC film based dosimetry system for measuring two-dimensional (2-D) and three-dimensional (3-D) dose distributions was developed. The nearly tissue-equivalent radiochromic GAFCHROMIC film was used to measure dose distributions. A drum scanner was investigated and modified. The spectral emission of the light source and the filters together with the efficiency of the CCD filters for the red color were matched and balanced with the absorption spectra of the film. Models based on refined studies have been developed to characterize theoretically the physics of film exposure and to calibrate the film. Mathematical descriptions are given to calculate optical densities from spectral data. The effect of darkening has been investigated and is described with a mathematical model. The influence of the scan temperature has been observed and described. In order to cope with the problem of individual film inhomogeneities, a double irradiation technique is introduced and implemented that yields dose accuracies as good as 2%-3%. Special software routines have been implemented for evaluating and handling the film data.
The new DIN (‘Deutsche Industrie-Norm’) 6875-1, which is currently being finalised, deals with quality assurance (QA) criteria and tests methods for linear accelerator and Gamma Knife stereotactic radiosurgery/radiotherapy including treatment planning, stereotactic frame and stereotactic imaging and a system test to check the whole chain of uncertainties. Our existing QA program, based on dedicated phantoms and test procedures, has been refined to fulfill the demands of this new DIN. The radiological and mechanical isocentre corresponded within 0.2 mm and the measured 50% isodose lines were in agreement with the calculated ones within less than 0.5 mm. The measured absorbed dose was within 3%. The resultant output factors measured for the 14-, 8- and 4-mm collimator helmet were 0.9870 ± 0.0086, 0.9578 ± 0.0057 and 0.8741 ± 0.0202, respectively. For 170 consecutive tests, the mean geometrical accuracy was 0.48 ± 0.23 mm. Besides QA phantoms and analysis software developed in-house, the use of commercially available tools facilitated the QA according to the DIN 6875-1 with which our results complied.
The performance of diffused planar germanium thermometers is found to be reliable at temperatures T>90 mK. At lower temperatures performance can be limited by overheating caused by measuring and spurious currents. The heating is associated with a thermal impedance Z∝T−4 which is larger than that found in typical bulk germanium thermometers. Surprisingly, Z is found to be essentially independent of the size of the planar resistor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.