Sepsis is a clinical syndrome characterized by a multisystem response to a pathogenic assault due to underlying infection that involves a combination of interconnected biochemical, cellular and organ-organ interactive networks. After the withdrawal of recombinant human-activated protein C (rAPC), researchers and physicians have continued to search for new therapeutic approaches and targets against sepsis, effective in both hypo-and hyperinflammatory states. Currently, statins are being evaluated as a viable option in clinical trials. Many agents that have shown favourable results in experimental sepsis are not clinically effective or have not been clinically evaluated. Apart from developing new therapeutic molecules, there is great scope for for developing a variety of drug delivery strategies, such as nanoparticulate carriers and phospholipid-based systems. These nanoparticulate carriers neutralize intracorporeal LPS as well as deliver therapeutic agents to targeted tissues and subcellular locations. Here, we review and critically discuss the present status and new experimental and clinical approaches for therapeutic intervention in sepsis. AbbreviationsAKI, acute kidney injury; ANP, atrial natriuretic peptide; BNEP, bactericidal neutralizing endotoxin protein; BPI, bactericidal/permeability-increasing protein; C5aR, complement component 5a receptor; CLP, caecal ligation puncture; DHEA, dehydroepiandrosterone; GM-CSF, granulocyte macrophage colony-stimulating factor; GRK2, G protein-coupled receptor kinase 2; HDL, high-density lipoprotein; HLA-DR, MHC class II cell surface receptor encoded by the human leukocyte antigen; HMGB-1, high mobility group box-1; HMG-CoA, 3-hydroxy-3-methyl glutaryl coenzyme A; iNOS, inducible nitric oxide synthase; LBP, lipopolysaccharide binding protein;
Ginsenoside Rg3 is a natural active ingredient that is extracted from Korean red ginseng root. It elevates the therapeutic effect of radiotherapy and chemotherapy, but previous studies found that the application of Rg3 is heavily limited by its low bioavailability and poor absorption via oral administration.To overcome these problems, Rg3-loaded PEG-PLGA-NPs (Rg3-NPs) were prepared by the modified spontaneous emulsification solvent diffusion (SESD) method, and the physicochemical characteristics of Rg3-NPs were investigated. We treated primary glioblastoma with 50 mM Rg3-NPs for 48h. We then used gene expression arrays (Illumina) for genome-wide expression analysis and validated the results for genes of interest by means of real-time PCR. Functional annotations were then performed using the DAVID and KEGG online tools. The results showed that the Rg3-NPs are slick and uniform, the average diameter of the nanoparticles is 75-90 nm, and their entrapment efficiency is 89.7 + 1.7%. MTT showed that the growth of cells can be significantly inhibited by Rg3-NPs in a dose-dependent manner. FCM testing showed Rg3-NPs can be released from the conjugate nanoparticle and react with the genes in the cell nuclei, causing changes in the gene molecules. We also found that cancer cells treated with Rg3-NPs undergo cell-cycle arrest at different checkpoints. This arrest was associated with a decrease in the mRNA levels of core regulatory genes BUB1, CDC20, TTK, and CENPE, as determined by microarray analysis and verified by real-time PCR. Furthermore, Rg3-NPs induced the expression of the apoptotic and antimigratory protein p53 in cell lines. The results of the present study, together with the results of earlier studies, show that Rg3-NPs target genes involved in the progression of the M-phase of the cell cycle. It is associated with several important pathways, which include apoptosis (p53). Rg3-NPs may be a potent cell-cycle regulation drug targeting the M-phase in glioblastoma cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.