This paper considers the hydrodynamic equations with nonlinear conduction when the internal energy and the opacity have power-law dependences in the density and in the temperature. This system models the situation in which a dense solid is brought into contact with a thermal bath. It supports self-similar solutions that depend on the surface temperature. The self-similar solution can exhibit a shock wave followed by an ablation front if the surface temperature does not increase too fast in time, but it can exhibit a heat front followed by an isothermal shock otherwise. These flows are carefully studied in order to clarify the role of the initial solid density in the energy absorption and the ablation process. Comparisons with numerical simulations show excellent agreement.
A novel rugby-ball shaped hohlraum is designed in the context of the indirect-drive scheme of inertial-confinement fusion (ICF). Experiments were performed on the OMEGA laser and are the first use of rugby hohlraums for ICF studies. Analysis of experimental data shows that the hohlraum energetics is well understood. We show that the rugby-ball shape exhibits advantages over cylinder, in terms of temperature and of symmetry control of the capsule implosion. Simulations indicate that rugby hohlraum driven targets may be candidates for ignition in a context of early Laser MegaJoule experiments with reduced laser energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.