Data on the ontogeny of the posterior haptor of monogeneans were obtained from more than 150 publications and summarised. These data were plotted into diagrams showing evolutionary capacity levels based on the theory of a progressive evolution of marginal hooks, anchors and other attachment components of the posterior haptor in the Monogenea (Malmberg, 1986). 5 + 5 unhinged marginal hooks are assumed to be the most primitive monogenean haptoral condition. Thus the diagrams were founded on a 5 + 5 unhinged marginal hook evolutionary capacity level, and the evolutionary capacity levels of anchors and other haptoral attachement components were arranged according to haptoral ontogenetical sequences. In the final "plotting diagram" data on hosts, type of spermatozoa, oncomiracidial ciliation, sensilla pattern and protonephridial systems were also included. In this way a number of correlations were revealed. Thus, for example, the number of 5 + 5 marginal hooks correlates with the most primitive monogenean type of spermatozoon and with few sensillae, many ciliated cells and a simple protonephridial system in the oncomiracidium. On the basis of the reviewed data it is concluded that the ancient monogeneans with 5 + 5 unhinged marginal hooks were divided into two main lines, one retaining unhinged marginal hooks and the other evolving hinged marginal hooks. Both main lines have recent representatives at different marginal hook evolutionary capacity levels, i.e. monogeneans retaining a haptor with only marginal hooks. For the main line with hinged marginal hooks the name Articulonchoinea n. subclass is proposed. Members with 8 + 8 hinged marginal hooks only are here called Proanchorea n. superord. Monogeneans with unhinged marginal hooks only are here called Ananchorea n. superord, and three new families are erected for its recent members: Anonchohapteridae n. tam., Acolpentronidae n. tam. and Anacanthoridae n. tam. (with 7 + 7, 8 + 8 and 9 + 9 unhinged marginal hooks, respectively). Except for the families of Articulonchoinea (e.g. Acanthocotylidae, Gyrodactylidae, Tetraonchoididae) Bychowsky's (1957) division of the Monogenea into the Oligonchoinea and Polyonchoinea fits the proposed scheme, i.e. monogeneans with unhinged marginal hooks form one old group, the Oligonchoinea, which have 5 + 5 unhinged marginal hooks, and the other group form the Polyonchoinea, which (with the exception of the Hexabothriidae) has a greater number (7 + 7, 8 + 8 or 9 + 9) of unhinged marginal hooks. It is proposed that both these names, Oligonchoinea (sensu mihi) and Polyonchoinea (sensu mihi), will be retained on one side and Articulonchoinea placed on the other side, which reflects the early monogenean evolution. Except for the members of Ananchorea [Polyonchoinea], all members
The intergenic spacer (IGS) region of ribosomal RNA genes was amplified and sequenced from a variety of Gyrodactylus specimens collected from wild and farmed Atlantic salmon Salmo salar, rainbow trout Oncorhynchus mykiss, and grayling Thymallus thymallus, from various locations in Northern Europe. Phylogenetic analysis of the sequences confirmed the distinction between G. salaris Malmberg, 1957 andG. thymalli Zitnan, 1960, supporting their validity as separate species. G. salaris adapted to rainbow trout are also distinct from the parasites found on Atlantic salmon, supporting the existence of a rainbow-trout form that was initially identified on the basis of morphological differences. Analysis of the IGS did not provide good resolution of different populations of G. salaris sensu stricto, but was consistent with epidemiological evidence which indicates that introduction of the parasite to Norway was recent and limited. The IGS may be helpful in distinguishing forms of G. salaris that are pathogenic to Atlantic salmon from those that are not. KEY WORDS: Gyrodactylus salaris · Ribosomal RNA · Intergenic spacer · IGS · Population · Genetic variationResale or republication not permitted without written consent of the publisher
Three new species of monogencans parasitizing hagfish are described: Myxinidocotyle californica gen. et sp.n., M. japonica sp.n. and Lophocotyle novaezeelandica sp.n. The pseudohaptor of Myxinidocotyle has 8+8 transverse ridges that never attain the radial arrangement characterizing Lophocotyle and Acanthocotyle. There are no sclerites in the pseudohaptoral ridges of Myxinidocotyle and Lophocotyle. The male reproductive system of Myxinidocotyle and Lophocotyle differs from that of Acanthocotyle in having a bilateral accessory gland apparatus and an armed copulatory organ. The femrle reproductive system has a large vaginal receptaculum scminis; in Myxinidocotyle with two vagino‐intestinal canals. The uterine pore and the male genital pore are close together and the vaginal pore is situated posterior to them, on the left ventral side of the body. We conclude that Myxinidocotyle, Lophocotyle and Acunrkocotyle represent different levels of acanthocotylid evolution. Myxinidocotyle being the most primitive. The family Acanthocotylidac is divided into the subfamilies Myxinidoeutylinae subfam.n., Lophocotylinae and Acanthoeutylinae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.