A method which allows measurements of the photoemissive quantum yield of a Cs3Sb cathode of a photomultiplier is described. The method consists of an accurate control of the photocathode polarization to separate its eventual effects from the dependence of the quantum yield on the temperature. Measurements thus performed on four 56AVP phototubes have been interpreted as an up-to-now unknown variation of the quantum yield due to the temperature. The measurements suggest that the Cs3Sb could exist in two states, one of which, never noticed before, is stable only below (260±2)°K (the transition temperature), and which moreover is very sensitive to the absorbed energy. This low temperature state has a low quantum yield (for whitish-blue light), which, depending on the absorbed energy, can be even five to seven times lower than the yield of the usual high temperature state of Cs3Sb.
By means of a recently developed method the photoemissive quantum yield (Y) of Cs,Sb films is measured as a function of temperature at very low light intensities. A strong evidence for the existence of Cs,Sb in two phases one of which (phase 11) is the known "state" with high Y is found. The other phase (I) has a much lower Y which depends strongly on the light intensity. Phase I exists only below (260 f 2) OK: above this temperature it transforms to phase 11. The existence of phase I up to now was not noticed because i t is very sensitive to the absorbed light energy which easily can convert it to phase 11. We suggest for phase I the regular body-centred cubic structure and for phase I1 the pseudo-body-centred cubic structure found a t room temperature by Jack and Wachtel. Moreover, we propose for Cs,Sb an energy band structure with a split valence band. The observed dependences of Y on temperature and light intensity are discussed in this framework. Even other Cs,Sb properties seem to fit rather well the proposed energy band and crystal structure.Die Quantenausbeute ( Y) des iiuBeren lichtelektrischen Effektes von Cs,Sb-Dunnschichten wird mittels einer neuen Methode als Funktion der Temperatur bei sehr niedrigen Lichtintensitaten gemessen. Es ergab sich ein deutlicher Hinweis, daB Cs,Sb in zwei Phasen existiert, von denen eine (Phase 11) dem bekannten Zustand mit hohem Y entspricht. Die andere Phase (I) hat einen vie1 niedrigeren Wert von Y, der stark von der Lichtintensitit abhiingig ist. Die Phase I existiert nur unterhalb (260 2) OK. Oberhalb dieser Temperatur verwandelt sie sich in die Phase 11. Die Existenz der Phase I war bisher nicht bekannt, weil sie fur die absorbierte Lichtenergie sehr empfindlich ist, welche sie sehr leicht in die Phase I1 verwandeln kann. Wir schlagen fur die Phase I die reguliir kubisch-raumzentrierte Gitterstruktur vor und fur die Phase I1 die pseudo kubisch-raumzentrierte Gitterstruktur ; letztere wurde von Jack und Wachtel bei Zimmertemperatur gefunden. Ferner schlagen wir fur Cs,Sb eine Energiebandstruktur mit aufgespaltenem Valenzband vor. Die beobachtete Abhiingigkeit von Y von der Temperatur und der Lichtintensitit wird in diesem Rahmen diskutiert. Es scheint, daB auch die anderen Eigenschaften von Cs,Sb mit der vorgeschlagenen Energieband-und Kristallstruktur im wesentlichen ubereinstimmen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.