Novel species of microfungi described in the present study include the following from Australia: Catenulostroma corymbiae from Corymbia, Devriesia stirlingiae from Stirlingia, Penidiella carpentariae from Carpentaria, Phaeococcomyces eucalypti from Eucalyptus, Phialophora livistonae from Livistona, Phyllosticta aristolochiicola from Aristolochia, Clitopilus austroprunulus on sclerophyll forest litter of Eucalyptus regnans and Toxicocladosporium posoqueriae from Posoqueria. Several species are also described from South Africa, namely: Ceramothyrium podocarpi from Podocarpus, Cercospora chrysanthemoides from Chrysanthemoides, Devriesia shakazului from Aloe, Penidiella drakensbergensis from Protea, Strelitziana cliviae from Clivia and Zasmidium syzygii from Syzygium. Other species include Bipolaris microstegii from Microstegium and Synchaetomella acerina from Acer (USA), Brunneiapiospora austropalmicola from Rhopalostylis (New Zealand), Calonectria pentaseptata from Eucalyptus and Macadamia (Vietnam), Ceramothyrium melastoma from Melastoma (Indonesia), Collembolispora aristata from stream foam (Czech Republic), Devriesia imbrexigena from glazed decorative tiles (Portugal), Microcyclospora rhoicola from Rhus (Canada), Seiridium phylicae from Phylica (Tristan de Cunha, Inaccessible Island), Passalora lobeliae-fistulosis from Lobelia (Brazil) and Zymoseptoria verkleyi from Poa (The Netherlands). Valsalnicola represents a new ascomycete genus from Alnus (Austria) and Parapenidiella a new hyphomycete genus from Eucalyptus (Australia). Morphological and culture characteristics along with ITS DNA barcodes are also provided.
The quality and quantity of nut production are fundamental to the economic viability of chestnut cultivation, yet recent reports indicate that severe damage due to moulds represents a significant problem for growers. We carried out an investigation of the agents of chestnut rot and internal fruit damage in three orchards in Italy. Black and brown rot, as well as insect damage, were found in all the areas examined. Brown rot appeared to be the main cause of damage, affecting 8% to 49% and 2% to 24% of nuts collected from the ground and from burrs, respectively. With respect to morphology and DNA sequencing analyses, fungal isolates obtained from brown rot were homologous with Gnomoniopsis sp. obtained from Dryocosmus kuriphilus (Yasumatsu) galls and with Gnomoniopsis castanea and Gnomoniopsis smithogilvyi described on chestnut in Italy and Australia, respectively. The same fungus was also isolated from the bark of one- and two-years-old healthy shoots at each site, supporting the endophytic behaviour of this rot agent. Brown rot symptoms on nuts associated with Gnomoniopsis sp. corresponded with those previously described by several authors and referred to as Phoma or Phomopsis endogena, suggesting a relationship between these fungi and Gnomoniopsis sp. It is to notice that the escalation of brown rot damage in Italy followed several periods of drought and probably the recent invasion of D. kuriphilus, both stress factors for chestnut trees
Diplodia pinea (syn. Sphaeropsis sapinea), a common pathogenic fungus, causes considerable damage in Italy, particularly to pine stands in which trees are subjected to environmental stress. The occurrence of D. pinea in symptomless Pinus nigra shoots was investigated and related to the amount of radiation received by the trees growing on a site in a year, expressed as the Normalized Insolation index (NIi). Twenty-seven pines were selected from nine locations in Trentino (northern Italy). For each pine the incidence of the fungus in apparently healthy shoots was determined by both culturing on an agar medium and application of real-time PCR. The incidence of D. pinea determined by culturing samples taken from asymptomatic trees was 59% (16 of 27 trees), compared with 85% found using real-time PCR (23 of 27 trees). Detection of the pathogen in healthy pine tissue was positively correlated (p < 0.05) with the NIi values, using both detection methods.
Summary Damage to various forest tree species caused by Diplodia sapinea has been reported in Italy since the early 20th century. However, until recently, systematic characterization of this microorganism, based on DNA sequence data, has been limited with only a general description of the fungus in the majority of the reports. To address this and provide a more accurate identification of Diplodia species associated on pine in Italy, we examined a total of 88 Botryosphaeriaceae isolates obtained from symptomatic and asymptomatic material from different hosts located in different geographical regions of Italy. Using molecular analysis, we were able to identify 67 isolates of D. sapinea and eight isolates of D. seriata. Diplodia sapinea was dominant on P. nigra shoots and was also detected on P. halepensis, P. pinea, P. pinaster, P. radiata and P. sylvestris, while D. seriata and other Botryosphaeriaceae appeared to be only occasionally present on shoots. The remaining 13 isolates represented nine different Botryosphaeriaceae species, occurring at low levels. Analysis of molecular variance (amova) based on DAMD‐PCR profiles detected low significant differences among D. sapinea isolates from the different sampling areas throughout Italy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.