A new software suite, called Crystallography & NMR System (CNS), has been developed for macromolecular structure determination by X-ray crystallography or solution nuclear magnetic resonance (NMR) spectroscopy. In contrast to existing structure-determination programs the architecture of CNS is highly flexible, allowing for extension to other structure-determination methods, such as electron microscopy and solid-state NMR spectroscopy. CNS has a hierarchical structure: a high-level hypertext markup language (HTML) user interface, task-oriented user input files, module files, a symbolic structure-determination language (CNS language), and low-level source code. Each layer is accessible to the user. The novice user may just use the HTML interface, while the more advanced user may use any of the other layers. The source code will be distributed, thus source-code modification is possible.The CNS language is sufficiently powerful and flexible that many new algorithms can be easily implemented in the CNS language without changes to the source code. The CNS language allows the user to perform operations on data structures, such as structure factors, electron-density maps, and atomic properties. The power of the CNS language has been demonstrated by the implementation of a comprehensive set of crystallographic procedures for phasing, density modification and refinement. User-friendly task-oriented input files are available for nearly all aspects of macromolecular (i') 1998 International Union of Crystallography Printed in Great Britain -all rights reserved structure determination by X-ray crystallography and solution NMR.
We announce the availability of the Xplor-NIH software package for NMR biomolecular structure determination. This package consists of the pre-existing XPLOR program, along with many NMR-specific extensions developed at the NIH. In addition to many features which have been developed over the last 20 years, the Xplor-NIH package contains an interface with a new programmatic framework written in C++. This interface currently supports the general purpose scripting languages Python and TCL, enabling rapid development of new tools, such as new potential energy terms and new optimization methods. Support for these scripting languages also facilitates interaction with existing external programs for structure analysis, structure manipulation, visualization, and spectral analysis.
The three-dimensional solution structure of the complex between calcium-bound calmodulin (Ca(2+)-CaM) and a 26-residue synthetic peptide comprising the CaM binding domain (residues 577 to 602) of skeletal muscle myosin light chain kinase, has been determined using multidimensional heteronuclear filtered and separated nuclear magnetic resonance spectroscopy. The two domains of CaM (residues 6 to 73 and 83 to 146) remain essentially unchanged upon complexation. The long central helix (residues 65 to 93), however, which connects the two domains in the crystal structure of Ca(2+)-CaM, is disrupted into two helices connected by a long flexible loop (residues 74 to 82), thereby enabling the two domains to clamp residues 3 to 21 of the bound peptide, which adopt a helical conformation. The overall structure of the complex is globular, approximating an ellipsoid of dimensions 47 by 32 by 30 angstroms. The helical peptide is located in a hydrophobic channel that passes through the center of the ellipsoid at an angle of approximately 45 degrees with its long axis. The complex is mainly stabilized by hydrophobic interactions which, from the CaM side, involve an unusually large number of methionines. Key residues of the peptide are Trp4 and Phe17, which serve to anchor the amino- and carboxyl-terminal halves of the peptide to the carboxyl- and amino-terminal domains of CaM, respectively. Sequence comparisons indicate that a number of peptides that bind CaM with high affinity share this common feature containing either aromatic residues or long-chain hydrophobic ones separated by a stretch of 12 residues, suggesting that they interact with CaM in a similar manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.