Background-Despite limiting elastic recoil and late vascular remodeling after angioplasty, coronary stents remain vulnerable to restenosis, caused primarily by neointimal hyperplasia. Paclitaxel, a microtubule-stabilizing drug, has been shown to inhibit vascular smooth muscle cell migration and proliferation contributing to neointimal hyperplasia. We tested whether paclitaxel-coated coronary stents are effective at preventing neointimal proliferation in a porcine model of restenosis. Methods and Results-Palmaz-Schatz stents were dip-coated with paclitaxel (0, 0.2, 15, or 187 g/stent) by immersion in ethanolic paclitaxel and evaporation of the solvent. Stents were deployed with mild oversizing in the left anterior descending coronary artery (LAD) of 41 minipigs. The treatment effect was assessed 4 weeks after stent implantation.
Despite significant improvements in the primary success rate of the medical and surgical treatments for atherosclerotic disease, including angioplasty, bypass grafting, and endarterectomy, secondary failure due to late restenosis continues to occur in 30-50% of individuals. Restenosis and the later stages in atherosclerotic lesions are due to a complex series of fibroproliferative responses to vascular injury involving potent growth-regulatory molecules (such as platelet-derived growth factor and basic fibroblast growth factor) and resulting in vascular smooth muscle cell (VSMC) proliferation, migration, and neointimal accumulation. We show here, based on experiments with both taxol and deuterium oxide, that microtubules are necessary for VSMCs to undergo the multiple transformations contributing to the development of the neointimal fibroproliferative lesion. Taxol was found to interfere both with platelet-derived growth factor-stimulated VSMC migration and with VSMC migration and with VSMC proliferation, at nanomolar levels in vitro. In vivo, taxol prevented medial VSMC proliferation and the neointimal VSMC accumulation in the rat carotid artery after balloon dilatation and endothelial denudation injury. This effect occurred at plasma levels approximately two orders of magnitude lower than that used clinically to treat human malignancy (peak levels achieved in this model were -50-60 nM). Taxol may therefore be of therapeutic value in preventing human restenosis with minimal toxicity. (J. Clin. Invest. 1995Invest. . 95:1869Invest. -1876
The All of Us Research Program (All of Us) is a national effort to accelerate health research by exploring the relationship between lifestyle, environment, and genetics. It is set to become one of the largest research efforts in U.S. history, aiming to build a national resource of data from at least one million participants. All of Us aims to address the need for more diversity in research and set the stage for that diversity to be leveraged in precision medicine research to come. This paper describes how the program assessed demographic characteristics of participants who have enrolled in other U.S. biomedical research cohorts to better understand which groups are traditionally represented or underrepresented in biomedical research. We 1) reviewed the enrollment characteristics of national cohort studies like All of Us, and 2) surveyed the literature, focusing on key diversity categories essential to the program's enrollment aims. Based on these efforts, All of Us emphasizes enrollment of racial and ethnic minorities, and has formally designated the following additional groups as historically underrepresented: individuals-with inadequate access to medical care; under the age of 18 or over 65; with an annual household income at or below 200% of the federal poverty level; who have a cognitive or physical disability; have less than a high school education or equivalent; are intersex; identify as a sexual or gender minority; or live in rural or non-metropolitan areas. Research accounting for wider demographic variability is critical. Only by ensuring diversity and by addressing the very barriers that limit it, can we position All of Us to better understand and tackle health disparities.
Background-Remodeling of the injured vascular wall is dependent on the action of several extracellular proteases. Previous studies have shown that expression of matrix metalloproteinases (MMP-2 and MMP-9) is upregulated after vascular injury and that MMP-2 is required for the migration of cultured vascular smooth muscle cells across complex extracellular matrix barriers. The present study examined changes in the expression of membrane-type metalloproteinase (MT-MMP-1), a putative regulator of MMP-2, in the tissue localization of MMP-2, and in the expression of activated and latent forms of MMP-2 and the tissue inhibitor of metalloproteinases, TIMP-2, in rat carotid arteries subjected to balloon catheter injury. Methods and Results-MT-MMP-1 mRNA levels increased sixfold after 3 days of injury, coinciding with an increase in MMP-2 activation assessed by gelatin zymography. Western blotting and gelatin zymography showed an increase in MMP-2 protein levels beginning 5 to 7 days after injury; immunocytochemistry and Western blotting showed that the increase occurred preferentially in the developing neointima. Conclusions-These results show that increased expression of MT-MMP-1 and activation of MMP-2 occurs early after injury to the rat carotid artery and that at later times MMP-2 is preferentially localized to the developing neointima. (Circulation. 1998;97:82-90.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.