In a recent work we recast the problem of estimating the minimum eigenvector (eigenvector corresponding to the minimum eigenvalue) of a symmetric positive definite matrix into a neural network framework. We now extend this work using an inflation technique to estimate all or some of the orthogonal eigenvectors of the given matrix. Based on these results, we form a cost function for the finite data case and derive a Newtonbased adaptive algorithm. The inflation technique leads to a highly modular and parallel structure for implementation. The computational requirement of the algorithm is L?( S2 ), being the size of the covariance matrix.We also present a rigorous convergence analysis of this adaptive algorithm. The algorithm is locally convergent and the undesired stationary points are unstable. Computer simulation results are provided to compare its performance with that of two adaptive subspace estimation methods proposed by Yang and Kaveh and an improved version of one of them, for stationary and nonstationary signal scenarios. The results show that the proposed approach performs identically to one of them and is significantly superior to the remaining two.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.