Alkali treatment coupled with high pressure defibrillation and acid treatment have been tried on banana fibers obtained from the pseudo stem of the banana plant Musa sapientum. The structure and morphology of the fibers have been found to be affected on the basis of the concentration of the alkali and acid and also on the pressure applied. Steam explosion in alkaline medium followed by acidic medium is found to be effective in the depolymerization and defibrillation of the fiber to produce banana nanowhiskers. The chemical constituents of raw and steam exploded fibers were analyzed according to the ASTM standards. Structural analysis of steam exploded fibers was carried out by FTIR and XRD. The fiber diameter and percentage crystallinity of the modified fibers were investigated using X-ray diffraction studies. Characterization of the fibers by SFM and TEM supports the evidence for the development of nanofibrils of banana fibers.
The reduction in fiber length during extrusion and injection molding of two commercial glass fiber-reinforced polypropylene products containing 30 percent by weight of glass fibers was studied. The first product had very small fibers of average length around 0.5 mm and also contained a coupling agent. The second product contained relatively longer glass fibers of 9 mm length and no coupling agent. In both cases, fiber attrition occurs predominantly at the solid-melt interface in the melting zone of the extruder. However, in the short fiber granules, the maximum of the length distribution, which for the initial sample is around 0.5 mm, moved to shorter fiber lengths along the screw channels further from the hopper. In the long fiber granules, a bimodal length distribution was obtained in the intermediate channels; the first maximum was around the original length of 9 mm and the second centered around 0.5 mm. Thus, the forces at the solid-melt interface result in fiber breakage to lengths which are predominantly around 0.5 mm. The fiber attrition was observed to be more severe in injection molding apparently because of higher shear rates and also because the fibers had to pass through narrow channels. The measured distributions of fiber length along the screw channels for the two products are presented, and the possible mechanisms of fiber breakage are discussed. The mechanical properties of samples containing different fiber length distributions and the effects of fiber length and interfacial adhesion on properties are presented and discussed in Part 11. , FEBRUARY 1989, Yo/. 10, No. 1 POLYMER COMPOSITES
Two commercial grades of glass fiber-reinforced polypropylene granules, one containing short fibers of average length around 0.5 mm with a coupling agent and the other containing relatively much longer fibers mostly around 9 mm, but no coupling agent, were injection-molded into dumbbells and tested in tension between -43 and 90°C. There is considerable fiber attrition during injection molding; the fiber lengths are reduced to average values of 0.4 to 0.8 mm for these two samples. Also during injection molding of the test sample, partial molecular alignment of the matrix (polypropylene) occurs which supplements the reinforcement of the matrix due to the aligned glass fibers (30 percent by weight) present in the composite sample. The stiffness and strength of these samples do not reflect the effects of fiber lengths since most of the fibers are of very small length in the molded specimen and also since the sample with longer fibers has a non-uniform distribution of fibers. While the interfacial shear strength does not appear to play a significant role in determining stiffness, it turns out to be extremely important in controlling strength, particularly at the higher test temperatures. The room temperature impact strength is high for the sample containing relatively longer fibers of average length around 0.8 mm in which fiber dispersion is non-uniform and fiber agglomerates are present. Acoustic emission data shows that debonding and fiber pull-out are the main contributors to sample toughness: this observation is supported by scanning electron micrographs of the fracture surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.