The physiological and biochemical behaviour of rice (Oryza sativa var. Jyoti) treated with copper (II) oxide nanoparticles (CuO NPs) was studied. Germination rate, root and shoot length, and biomass decreased, while uptake of Cu in the roots and shoots increased at high concentrations of CuO NPs. The accumulation of CuO NPs was observed in the cells, especially in the chloroplasts and was accompanied by a lower number of thylakoids per granum. Photosynthetic rate, transpiration rate, stomatal conductance, maximal quantum yield of PSII photochemistry, and photosynthetic pigment contents declined, with a complete loss of PSII photochemical quenching at 1,000 mg(CuO NP) L 1 . Oxidative and osmotic stress was evidenced by increased malondialdehyde and proline contents. Elevated expression of ascorbate peroxidase and superoxide dismutase were also observed. Our work clearly demonstrated the toxic effect of Cu accumulation in roots and shoots that resulted in loss of photosynthesis.
The reduction in fiber length during extrusion and injection molding of two commercial glass fiber-reinforced polypropylene products containing 30 percent by weight of glass fibers was studied. The first product had very small fibers of average length around 0.5 mm and also contained a coupling agent. The second product contained relatively longer glass fibers of 9 mm length and no coupling agent. In both cases, fiber attrition occurs predominantly at the solid-melt interface in the melting zone of the extruder. However, in the short fiber granules, the maximum of the length distribution, which for the initial sample is around 0.5 mm, moved to shorter fiber lengths along the screw channels further from the hopper. In the long fiber granules, a bimodal length distribution was obtained in the intermediate channels; the first maximum was around the original length of 9 mm and the second centered around 0.5 mm. Thus, the forces at the solid-melt interface result in fiber breakage to lengths which are predominantly around 0.5 mm. The fiber attrition was observed to be more severe in injection molding apparently because of higher shear rates and also because the fibers had to pass through narrow channels. The measured distributions of fiber length along the screw channels for the two products are presented, and the possible mechanisms of fiber breakage are discussed. The mechanical properties of samples containing different fiber length distributions and the effects of fiber length and interfacial adhesion on properties are presented and discussed in Part 11. , FEBRUARY 1989, Yo/. 10, No. 1 POLYMER COMPOSITES
Two commercial grades of glass fiber-reinforced polypropylene granules, one containing short fibers of average length around 0.5 mm with a coupling agent and the other containing relatively much longer fibers mostly around 9 mm, but no coupling agent, were injection-molded into dumbbells and tested in tension between -43 and 90°C. There is considerable fiber attrition during injection molding; the fiber lengths are reduced to average values of 0.4 to 0.8 mm for these two samples. Also during injection molding of the test sample, partial molecular alignment of the matrix (polypropylene) occurs which supplements the reinforcement of the matrix due to the aligned glass fibers (30 percent by weight) present in the composite sample. The stiffness and strength of these samples do not reflect the effects of fiber lengths since most of the fibers are of very small length in the molded specimen and also since the sample with longer fibers has a non-uniform distribution of fibers. While the interfacial shear strength does not appear to play a significant role in determining stiffness, it turns out to be extremely important in controlling strength, particularly at the higher test temperatures. The room temperature impact strength is high for the sample containing relatively longer fibers of average length around 0.8 mm in which fiber dispersion is non-uniform and fiber agglomerates are present. Acoustic emission data shows that debonding and fiber pull-out are the main contributors to sample toughness: this observation is supported by scanning electron micrographs of the fracture surfaces.
We studied the effects of high-light exposure (500 micromol m(-2) s(-1) of photosynthetic active radiation) on the cyanobacteria Nostoc spongiaeforme Agardh, a fresh-water alga, and Phormidium corium Agardh (Gomont), a marine alga, with respect to photosynthesis, pigments, sugar content, lipid peroxidation, fatty acids composition, antioxidant enzymes activity and DNA. It was seen that the ratio of variable fluorescence (Fv) to maximum fluorescence (Fm), which is indicative of photosynthetic efficiency, decreased because of the light treatment. The damage to photosynthesis occurred in the antenna system and the photosynthetic II reaction center. Photobleaching of photosynthetic pigments was also observed. High-light treatment also resulted in decreased sugar content, which was probably due to the effect on photosynthesis. Peroxidation of membrane lipids, indicating oxidative damage to lipids and a high level of unsaturation in the cell membrane, was also observed. The activity of antioxidant enzyme superoxide dismutase and ascorbate peroxidase was increased, probably as a result of oxidative damage observed in the form of lipid peroxidation. Quantitative decreases in phospholipid and glycolipid levels were also observed. The level of unsaturated fatty acids in total lipids and glycolipids remained unchanged in both species; however, the level of saturated fatty acids decreased, which slightly changed the ratio in favor of unsaturated fatty acids. Degradation of DNA was also observed in both species. There was a transient plateau 2-4 h after exposure to high-light treatment in the Fv/Fm ratio and in levels of phycobilisome pigments, sugars and antioxidant enzymes after an initial decrease 1 h after the treatment. These findings may indicate a period of partial adaptation to high light that is due to the efficiency of protective processes operational in the two species, which subsequently failed after a longer exposure duration of 4-6 h.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.