Photovoltaic (PV) solar panels account for a major portion of the smart grid capacity. On the other hand, the accumulation of solar panels dust is a significant challenge for PV-based systems. The accumulation of solar panels dust results in a significant reduction in the amount of energy produced. Because of the country’s low wind velocity and rainfall, frequent cleaning of solar panels is necessary either by manual or automated means. Cleaning activities should only be initiated when absolutely essential to reduce maintenance costs and increase the power output of solar panels that have been projected to be affected by dust accumulation. In this paper, we develop a deep belief network model to detect the dust particles in the solar panels installed as a large unit. The study takes into account various input metrics that includes solar irradiance, temperature level, and dust level on the panels. These metrics are used for the estimation of the level of dust present in the atmosphere and how often the panels can be cleaned at regular intervals. The simulation is conducted to test the efficacy of the model in cleaning the panels. The results are estimated in terms of accuracy, precision, recall, and F-measure. The results of the simulation show that the proposed model achieves higher accuracy rate of more than 99% than other methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.