Thirty-four patients with advanced Parkinson's disease participated in a prospective 24-month double-blind, placebo-controlled trial of fetal nigral transplantation. Patients were randomized to receive bilateral transplantation with one or four donors per side or a placebo procedure. The primary end point was change between baseline and final visits in motor component of the Unified Parkinson's Disease Rating Scale in the practically defined off state. There was no significant overall treatment effect (p = 0.244). Patients in the placebo and one-donor groups deteriorated by 9.4 +/- 4.25 and 3.5 +/- 4.23 points, respectively, whereas those in the four-donor group improved by 0.72 +/- 4.05 points. Pairwise comparisons were not significant, although the four-donor versus placebo groups yielded a p value of 0.096. Stratification based on disease severity showed a treatment effect in milder patients (p = 0.006). Striatal fluorodopa uptake was significantly increased after transplantation in both groups and robust survival of dopamine neurons was observed at postmortem examination. Fifty-six percent of transplanted patients developed dyskinesia that persisted after overnight withdrawal of dopaminergic medication ("off"-medication dyskinesia). Fetal nigral transplantation currently cannot be recommended as a therapy for PD based on these results.
Grafts of fetal mesencephalic tissue can survive for a long period in the human brain and restore dopaminergic innervation to the striatum in patients with Parkinson's disease. In the patient we studied, clinical improvement and enhanced fluorodopa with uptake on PET scanning were associated the survival of the grafts and dopaminergic reinnervation of the striatum.
We performed fetal nigral transplantations in 4 Parkinson's disease (PD) patients. Solid grafts were bilaterally implanted into the postcommissural putamen using 3 to 4 donors per side aged 6 1/2 to 9 weeks postconception. Transplant deposits were separated by no more than 5 mm in three dimensions. Cyclosporine was employed for a total of 6 months. Patients were evaluated at baseline and at 1, 3, and 6 months postoperatively. Striatal 18-fluorodopa uptake was assessed by positron emission tomography at baseline and at 6 months postoperatively. The procedure was well tolerated in all patients. One patient had a clinically asymptomatic superficial cortical hemorrhage along the needle tract and a second had transient postoperative confusion and hallucinations. All patients experienced clinically meaningful benefit. Significant improvement (p < 0.05) was detected in total UPDRS score during the "off" state, Schwab-England disability score during the "off" state, percent "off" time, and percent "on" time with dyskinesia. Increased striatal fluorodopa uptake was observed bilaterally in each patient, with mean increases of 53% on the right (p = 0.01) and 33% on the left (p = 0.08). Our study demonstrated clear and consistent improvement in clinical features and striatal fluorodopa uptake following fetal tissue transplantation in patients with advanced PD whose condition was not improved preoperatively by drug manipulation. These preliminary results are encouraging and support further studies to evaluate grafting strategies as a therapy for PD.
Neural and stem cell transplantation is emerging as a potential treatment for neurodegenerative diseases. Transplantation of specific committed neuroblasts (fetal neurons) to the adult brain provides such scientific exploration of these new potential therapies. Huntington's disease (HD) is a fatal, incurable autosomal dominant (CAG repeat expansion of huntingtin protein) neurodegenerative disorder with primary neuronal pathology within the caudate-putamen (striatum). In a clinical trial of human fetal striatal tissue transplantation, one patient died 18 months after transplantation from cardiovascular disease, and postmortem histological analysis demonstrated surviving transplanted cells with typical morphology of the developing striatum. Selective markers of both striatal projection and interneurons such as dopamine and c-AMP-related phosphoprotein, calretinin, acetylcholinesterase, choline acetyltransferase, tyrosine hydroxylase, calbindin, enkephalin, and substance P showed positive transplant regions clearly innervated by host tyrosine hydroxylase fibers. There was no histological evidence of immune rejection including microglia and macrophages. Notably, neuronal protein aggregates of mutated huntingtin, which is typical HD neuropathology, were not found within the transplanted fetal tissue. Thus, although there is a genetically predetermined process causing neuronal death within the HD striatum, implanted fetal neural cells lacking the mutant HD gene may be able to replace damaged host neurons and reconstitute damaged neuronal connections. This study demonstrates that grafts derived from human fetal striatal tissue can survive, develop, and are unaffected by the disease process, at least for 18 months, after transplantation into a patient with HD. R ecent findings in genetics, stem cell biology, and neural transplantation suggest that brain repair will be possible for the treatment of neurodegenerative diseases (1, 2). Before initiating large clinical trials that test the efficacy of novel donor cells, it is important to determine the clinical feasibility of such cell-based therapies. Transplantation of specific committed neuroblasts (fetal neurons) to the adult human brain provides such a scientific exploration of feasibility of cell-based therapies.The underlying genetic mutation of Huntington's disease (HD) is a polyglutamine repeat in the N-terminal region of the huntingtin gene (3). This mutation results in brain pathology dominated by massive neuronal loss of the medium spiny projection neurons of the caudate and putamen (4). Recent studies of HD postmortem brain tissue show that the N-terminal region of the mutant huntingtin protein aggregates in nuclear inclusions in both cortical and striatal neurons (5-7). These aggregates may represent evidence of ongoing cellular pathology (5-7). Implanted fetal neural cells lacking the mutant HD gene may be able to replace dead or dysfunctional host neurons and reconstitute disrupted neuronal connections (8, 9).Physiological and anatomical evidence in animal st...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.