The use of cushioned insoles has been recommended as a method to reduce the impact forces on feet associated with running. This study is used to determine the influence of insole structure and thickness on the permeability and conductivity properties of air and temperature. The insoles are constructed with warp-knitted polyester spacer fabrics with 3D construction and have good cushioning, permeability, and conductivity properties. The middle layer is made up of polyester monofilament yarn which decides the thickness of fabric, and the two outer surfaces of the fabric were made from polyester multifilament yarns which is a closed and open structure. The comfort properties of spacer fabric have been studied by measuring air permeability, water vapor permeability, and thermal properties with respect to fabric porosity. One-way analysis of variance is used to analyze the significant of fabric thickness and surface structures. The experimental result shows that the vertical gap of the two outer surface layers and the horizontal pore size of the face surface decide the permeability and conductivity properties of spacer fabrics. The fabric with higher porosity show high permeability of air and water vapor. Depending on the fabric thickness and structure, the 4-mm thickness of spacer fabric with locknit structure resulted in low air and water vapor permeability. It is found that the 3.1-mm thickness spacer fabric with hexagonal net structure proves to have good air and water vapor permeability and comparatively lower thermal conductivity.
Natural fibres are widely used in different applications and one of the important applications is sound insulation. The research trends in the improvement of thermal and sound insulation of the jute-based composite materials filled with polymer materials are studied by the researchers. Jute fibres exhibit admirable heat and sound insulation properties but this has not been completely researched as yet. A detailed information related to enrich the insulation properties of jute non-woven-reinforced polymer composites based on its design of manufacturing, density of composites, morphology, structural parameters of fibre batting, number of layers and recent strategies are discussed for its high-performance potential applications.
Sandwich structure of non-woven composite is produced by using a compressive hot pressing method. It is ranging from 2500 grams per square meter (gsm) to 3500 gsm. Composite sample is designed using Box and Behnken model. Considering 50-70% weight of jute fibre content with 30-50% weight of hollow conjugated polyester fibre, ideal thickness of the composites is maintained in the range from 4 to 5 mm. Thermal properties such as thermal conductivity, thermal resistance, thermal transmittance and thermal diffusivity were evaluated by considering three factors: weight of jute (A), weight of hollow conjugated polyester (B) and thickness of the composite (C). The thermal conductivity of the composite material is determined by heat flow meter method ASTM C518. Experiment result will help to make a suitable standardized panel composite for thermal insulation. It requires 3600 gsm 51/49 parts of contribution of jute/hollow conjugated polyester fibre with 5.0 mm thickness and 3200 gsm 76.5/23.5 parts of contribution of jute/hollow conjugated polyester fibre with 4.5 mm thickness of the composites. The composite weight of 3280 gsm shown optimized thermal responses, it was predicted from response surface method graph. Contribution of jute/hollow conjugated polyester fibre of 54/46 parts with 5.0 mm thickness would be considered to make standardized composite panel. Mostly air conditioning process reduces the energy cost spent for the thermal stability in indoor climate of dwellings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.