The transport of oxygen and carbon dioxide through a set of random copolymer films based on poly(ethylene terephthalate) (PET) and poly(ethylene 2,6-naphthalate) (PEN) were explored. Diffusivity and permeability of both gases decreased with increasing PEN content. The oxygen and carbon dioxide diffusion coefficients decreased 74 and 82% from pure PET to pure PEN, respectively. The presence of stiffer PEN moieties had an effect on the glass transition temperature (T g ) of PET/PEN blends and gas barrier. In the complete range of tested blends, the differential scanner calorimeter analysis displayed a single value of thermal glass transition temperature. As the PEN content was increased, the fractional free volume (FFV) and the diffusion coefficients of the blends were decreased. The Doolittle equation provided the best fit for diffusivity and FFV and showed that the gas transport behavior was better understood when it was taken into consideration the cohesive energy of blends. As the PEN content in films was increased, their rigidity and the glass/rubber transition temperature were increased, and their capacity to be penetrated by small molecules like O 2 and CO 2 was decreased. POLYM. ENG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.