We use X-ray active galactic nuclei (AGN) observed by the Chandra X-ray Observatory within the 9.3 deg2 Boötes field of the NDWFS to study whether there is a correlation between X-ray luminosity (LX) and star formation rate (SFR) of the host galaxy, at 0.5 < z < 2.0, with respect to the position of the galaxy to the main sequence (SFRnorm). About half of the sources in the X-ray sample have spectroscopic redshifts. We also construct a reference galaxy catalogue. For both datasets we use photometric data from the optical to the far-infrared compiled by the HELP project, and apply spectral energy distribution fitting, using the X-CIGALE code. We exclude quiescent sources from both the X-ray and the reference samples. We also account for the mass completeness of our dataset, in different redshifts bins. Our analysis highlights the importance of studying the SFR–LX relation in a uniform manner, taking into account systematics and selection effects. Our results suggest, in less massive galaxies (log [M*(M⊙)] ∼ 11), that an AGN enhances the SFR of the host galaxy by ∼50% compared to non-AGN systems. A flat relation is observed for the most massive galaxies. The SFRnorm does not evolve with redshift. The results, although tentative, are consistent with a scenario where, in less massive systems, both AGN and star formation are fed by cold gas supplied by a merger event. In more massive galaxies the flat relation could be explained by a different supermasssive black hole fuelling mechanism that is decoupled from the star formation of the host galaxy (e.g., hot diffuse gas). Finally, we compare the host galaxy properties of X-ray absorbed and unabsorbed sources. Our results show no difference, which suggests that X-ray absorption is not linked with the properties of the galaxy.
We present a clustering analysis of X-ray selected AGN by compiling X-ray samples from the literature and re-estimating the dark matter (DM) halo masses of AGN in a uniform manner. We find that moderate luminosity AGN (L 2−10 keV ≃ 10 42 − 10 44 erg s −1 ) in the z ≃ 0 − 1.3 Universe are typically found in DM haloes with masses of ∼ 10 13 M ⊙ . We then compare our findings to the theoretical predictions of the coupled galaxy and black hole formation model GALFORM. We find good agreement when our calculation includes the hot-halo mode of accretion onto the central black hole. This type of accretion, which is additional to the common cold accretion during disk instabilities and galaxy mergers, is tightly coupled to the AGN feedback in the model. The hot-halo mode becomes prominent in DM haloes with masses greater than ∼ 10 12.5 M ⊙ , where AGN feedback typically operates, giving rise to a distinct class of moderate luminosity AGN that inhabit rich clusters and superclusters. Cold gas fuelling of the black hole cannot produce the observationally inferred DM halo masses of X-ray AGN. Switching off AGN feedback in the model results in a large population of luminous quasars (L 2−10 keV > 10 44 erg s −1 ) in DM haloes with masses up to ∼ 10 14 M ⊙ , which is inconsistent with the observed clustering of quasars. The abundance of hot-halo AGN decreases significantly in the z ≃ 3 − 4 universe. At such high redshifts, the cold accretion mode is solely responsible for shaping the environment of moderate luminosity AGN. Our analysis supports two accretion modes (cold and hot) for the fuelling of supermassive black holes and strongly underlines the importance of AGN feedback in cosmological models both of galaxy formation and black hole growth.
There is growing evidence supporting the coeval growth of galaxies and their resident super-massive black hole (SMBH). Most studies also claim a correlation between the activity of the SMBH and the star formation of the host galaxy. It is unclear, however, whether this correlation extends to all redshifts and X-ray luminosities. Some studies find a weaker dependence at lower luminosities and/or a suppression of the star formation at high luminosities. We here use data from the X-ATLAS and XMM-XXL North fields and compile the largest X-ray sample up to date to investigate how X-ray selected AGN affect the star formation of their host galaxies in a wide redshift and luminosity baseline of 0.03 < z < 3 and log L X (2 − 10 keV) = (41 − 45.5) erg s −1 . Our sample consists of 3336 AGN. 1872 of our sources have spectroscopic redshifts. For the remaining sources we calculate photometric redshifts using TPZ, a machine-learning algorithm. We estimate stellar masses (M * ) and star formation rates (SFRs) by applying spectral energy distribution fitting through the CIGALE code, using optical, near-IR, and mid-IR photometry (SDSS, VISTA, and WISE). Of our sources, 608 also have far-IR photometry (Herschel). We use these sources to calibrate the SFR calculations of our remaining X-ray sample. Our results show a correlation between the X-ray luminosity (L X ) and the SFR of the host galaxy at all redshifts and luminosities spanned by our sample. We also find a dependence of the specific SFR (sSFR) on redshift, while there are indications that the X-ray luminosity enhances the sSFR even at low redshifts. We then disentangle the effects of stellar mass and redshift on the SFR and again study its dependence on the X-ray luminosity. Towards this end, we estimate the SFR of main-sequence galaxies that have the same stellar mass and redshift as our X-ray AGN and compare them with the SFR of our X-ray AGN. Our analysis reveals that the AGN enhances the star formation of its host galaxy when the galaxy lies below the main sequence and quenches the star formation of the galaxy it lives in when the host lies above the main sequence. Therefore, the effect of AGN on the SFR of the host galaxy depends on the location of the galaxy relative to the main sequence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.