Trends in cirrus cloud cover have been estimated based on 16 years of data from ISCCP (International Satellite Cloud Climatology Project). The results have been spatially correlated with aircraft density data to determine the changes in cirrus cloud cover due to aircraft traffic. The correlations are only moderate, as many other factors have also contributed to changes in cirrus. Still we regard the results to be indicative of an impact of aircraft on cirrus amount. The main emphasis of our study is on the area covered by the ME-TEOSAT satellite to avoid trends in the ISCCP data resulting from changing satellite viewing geometry. In Europe, which is within the METEOSAT region, we find indications of a trend of about 1-2% cloud cover per decade due to aircraft, in reasonable agreement with previous studies. The positive trend in cirrus in areas of high aircraft traffic contrasts with a general negative trend in cirrus. Extrapolation in time to cover the entire period of aircraft operations and in space to cover the global scale yields a mean estimate of 0.03 Wm −2 (lower limit 0.01, upper limit 0.08 Wm −2) for the radiative forcing due to aircraft induced cirrus. The mean is close to the value given by IPCC (1999) as an upper limit.
Abstract. Monthly mean aerosol optical depth (AOD) over ocean is compared from a total of 9 aerosol retrievals during a 40 months period. Comparisons of AOD have been made both for the entire period and sub periods. We identify regions where there is large disagreement and good agreement between the aerosol satellite retrievals. Significant differences in AOD have been identified in most of the oceanic regions. Several analyses are performed including spatial correlation between the retrievals as well as comparison with AERONET data. During the 40 months period studied there have been several major aerosol field campaigns as well as events of high aerosol content. It is studied how the aerosol retrievals compare during such circumstances. The differences found in this study are larger than found in a previous study where 5 aerosol retrievals over an 8 months period were compared. However, results in coastal regions are promising especially for aerosol retrievals from satellite instruments dedicated for aerosol research. In depth analyses explaining the differences between AOD obtained in different retrievals are clearly needed. We limit this study to identify differences and similarities and indicate possible sources that affect the quality of the retrievals. This is a necessary first step towards understanding the differences and improving the retrievals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.