Using multiunit recording of action potentials from the whole nerve with the aid of external perfusion, we investigated the effects of dopamine (DOP) agonists that are involved in modulatory actions on synaptic transmission in the isolated labyrinth preparations of frogs. The external application of DOP (0.1–1 mM), the D1 agonist chloro-APB hydrobromide (CAPB, 50–100 μM) and the D2 agonist quinerolane (QUI, 50–100 μM) induced a dose-dependent and reversible decline in the resting discharge frequency. In this concentration range, the potency of applied CAPB considerably exceeded that of QUI. AMPA, NMDA and ACPD responses were inhibited by the D1 and D2 agonists, implicating both subtypes of DOP receptors in the modulation of both ionotropic and metabotropic glutamate receptors. The inhibitory action of the DOP agonists on L-glutamate responses persisted in a high Mg2+ solution in conditions of selective activation of the postsynaptic membrane. The results obtained suggest that DOP may interact with both D1 and D2 receptor subtypes, most likely located postsynaptically on the afferent nerve fibers. This dopaminergic control mechanism may result in the reduction of the activated firing rate, thus preventing over-excitation and excitotoxic injury of the afferent dendrites after the external application of L-glutamate and excessive receptor stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.