Optical Coherence Tomography (OCT) is an imaging modality that is used extensively for ophthalmic diagnosis, near-histological visualization and quantification of retinal abnormalities such as cysts, exudates, retinal layer disorganization, etc. Intra-retinal cysts (IRCs) occur in several macular disorders such as, diabetic macular edema, retinal vascular disorders, age-related macular degeneration, and inflammatory disorders. Automated segmentation of IRCs poses challenges owing to variations in the acquisition system scan intensities, speckle noise, and imaging artifacts. Several segmentation methods have been proposed in the literature for IRC segmentation on vendor-specific OCT images that lack generalizability across imaging systems. In this work, we propose a fully convolutional network (FCN) model for vendor-independent IRC segmentation. The proposed method counteracts image noise variabilities and trains FCN models on OCT sub-images from the OPTIMA cyst segmentation challenge dataset (with four different vendor-specific images, namely, Cirrus, Nidek, Spectralis, and Topcon). Further, optimal data augmentation and model hyper-parametrization is shown to prevent over-fitting for IRC area segmentation. The proposed method is evaluated on the test data set with a recall/precision rate of 0.66/0.79 across imaging vendors. The Dice correlation coefficient of the proposed method outperforms that of the published algorithms in the OPTIMA cyst segmentation challenge with a Dice rate of 0.71 across the vendors.
Optical Coherence Tomography (OCT) has emerged as a major diagnostic modality for retinal imaging. Although OCT generates gross volumetric data, manual analysis of the images for locating or quantifying retinal cysts is a time consuming process. Recently semi- and fully-automatic methods for locating and segmenting retinal cysts have been proposed in the literature. Our paper proposes a fully automatic method for intra-retinal cyst segmentation using marker controlled watershed transform on B-scan images obtained on OCT scanning. Markers are obtained using k-means clustering and used as sources for topographical based watershed transform for final segmentation. Proposed method was evaluated both quantitatively and qualitatively on Optima Cyst Challenge dataset against ground truth obtained from two graders. Experimental results show that the proposed method outperformed other recently proposed methods. Our algorithm achieved a recall rate of 82% while preserving precision rate of 77%, and gave a higher correlation rate of 96% with ground truth obtained from two graders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.