Mass and energy distributions of binary reaction products obtained in the reactions 22Ne+249Cf,26Mg+248Cm, 36S+238U, and 58Fe+208Pb have been measured. All reactions lead to Hs isotopes. At energies below the Coulomb barrier the bimodal fission of Hs*, formed in the reaction 26Mg+248Cm, is observed. In the reaction 36S+238U, leading to the formation of a similar compound nucleus, the main part of the symmetric fragments arises from the quasifission process. At energies above the Coulomb barrier fusion-fission is the main process leading to the formation of symmetric fragments for both reactions with Mg and S ions. In the case of the 58Fe+208Pb reaction the quasifission process dominates at all measured energies
Reaction products from the system 136 Xe + 208 Pb at 136 Xe ions laboratory energies of 700, 870, and 1020 MeV were studied by two-body kinematics and by a catcher-foil activity analysis to explore the theoretically proposed suitability of such reaction as a means to produce neutron-rich nuclei in the neutron shell closure N = 126. Cross sections for products heavier than 208 Pb were measured and were found sensibly larger than new theoretical predictions. Transfers of up to 16 nucleons from Xe to Pb were observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.