We recently reported on CFP-Epac-YFP, an Epac-based single polypeptide FRET reporter to resolve cAMP levels in living cells. In this study, we compared and optimized the fluorescent protein donor/acceptor pairs for use in biosensors such as CFP-Epac-YFP. Our strategy was to prepare a wide range of constructs consisting of different donor and acceptor fluorescent proteins separated by a short linker. Constructs were expressed in HEK293 cells and tested for FRET and other relevant properties. The most promising pairs were subsequently used in an attempt to improve the FRET span of the Epac-based cAMP sensor. The results show significant albeit not perfect correlation between performance in the spacer construct and in the Epac sensor. Finally, this strategy enabled us to identify improved sensors both for detection by sensitized emission and by fluorescent lifetime imaging. The present overview should be helpful in guiding development of future FRET sensors.
Circular dichroism (CD) spectra have been obtained from several variants of green fluorescent protein : blue fluorescent protein (BFP), enhanced cyan fluorescent protein (CFP), enhanced green fluorescent protein (GFP), enhanced yellow fluorescent protein (YFP), all from Aequorea victoria, and the red fluorescent protein from the coral species Discosoma (DsRed). We demonstrate that CD spectra in the spectral fingerprint region of the chromophore yield spectra that after normalization are not coincident with the normalized absorbance spectra of GFP, YFP and DsRed. On the other hand, the CD spectra of BFP and CFP coincide with the absorbance spectra. The resolution of absorption and CD spectra into Gaussian bands confirmed the location of the different electronic band positions of GFP and YFP as reported in the literature using other techniques. In the case of BFP and CFP the location of Gaussian bands provided information of the vibrational progression of the electronic absorption bands. The CD spectrum of DsRed is anomalous in the sense that the major CD band has a clear excitonic character. Far-UV CD spectra of GFP confirmed the presence of the high L L-sheet content of the polypeptide chain in the three-dimensional structure. ß
The movement protein (MP) of cowpea mosaic virus (CPMV) forms tubules on infected protoplasts and through plasmodesmata in infected plants. In protoplasts the MP fused to GFP (MP-GFP) was shown to localize in peripheral punctate structures and in long tubular structures extending from the protoplast surface. Using cytoskeletal assembly inhibitors (latrunculin B and oryzalin) and an inhibitor of the secretory pathway (brefeldin A), targeting of the MP to the peripheral punctate structures was demonstrated not to be dependent on an intact cytoskeleton or functional secretion pathway. Furthermore it was shown that a disrupted cytoskeleton had no effect on tubule formation but that the addition of brefeldin A severely inhibited tubule formation. The results presented in this paper suggest a role for a plasma membrane host factor in tubule formation of plant viral MPs.
Fluorescent proteins, such as green fluorescent protein and red fluorescent protein (DsRED), have become frequently used reporters in plant biology. However, their potential to monitor dynamic gene regulation is limited by their high stability. The recently made DsRED-E5 variant overcame this problem. DsRED-E5 changes its emission spectrum over time from green to red in a concentration independent manner. Therefore, the green to red fluorescence ratio indicates the age of the protein and can be used as a fluorescent timer to monitor dynamics of gene expression. Here, we analyzed the potential of DsRED-E5 as reporter in plant cells. We showed that in cowpea (Vigna unguiculata) mesophyll protoplasts, DsRED-E5 changes its fluorescence in a way similar to animal cells. Moreover, the timing of this shift is suitable to study developmental processes in plants. To test whether DsRed-E5 can be used to monitor gene regulation in plant organs, we placed DsRED-E5 under the control of promoters that are either up-or down-regulated (MtACT4 and LeEXT1 promoters) or constitutively expressed (MtACT2 promoter) during root hair development in Medicago truncatula. Analysis of the fluorescence ratios clearly provided more accurate insight into the timing of promoter activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.